首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   0篇
废物处理   1篇
环保管理   6篇
综合类   45篇
污染及防治   6篇
社会与环境   1篇
  2018年   1篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2007年   1篇
  2004年   2篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   6篇
  1982年   2篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1978年   3篇
  1977年   2篇
  1976年   2篇
  1975年   3篇
  1974年   3篇
  1971年   2篇
  1970年   1篇
  1967年   1篇
  1962年   1篇
  1959年   1篇
  1958年   1篇
  1957年   1篇
  1956年   3篇
  1955年   1篇
  1946年   1篇
排序方式: 共有59条查询结果,搜索用时 812 毫秒
41.
James Androwski, Abraham Springer, Thomas Acker, and Mark Manone, 2011. Wind‐Powered Desalination: An Estimate of Saline Groundwater in the United States. Journal of the American Water Resources Association (JAWRA) 47(1):93‐102. DOI: 10.1111/j.1752‐1688.2010.00493.x Abstract: Increasing scarcity of freshwater resources in many regions of the world is leading water resource managers to consider desalination as a potential alternative to traditional freshwater supplies. Desalination technologies are energy intensive and expensive to implement making desalination using renewable energy resources a potentially attractive option. Unfortunately, saline groundwater resources are not well characterized for many regions hindering consideration of such technologies. In this assessment, we estimate the saline groundwater resources of the principal aquifers of the United States using a geographic information system and correlate these resources to wind resources potentially sufficient to supply the energy demand of desalination equipment. We estimate that 3.1 × 1014 m3 saline groundwater, total volume, are contained in 28 of the country’s principal aquifers known to contain saline groundwater. Of this volume, 1.4 × 1014 m3 saline groundwater are co‐located with wind resources sufficient for electrical generation to desalinate groundwater.  相似文献   
42.
43.
    
  相似文献   
44.
45.
46.
47.
48.
49.
Natural landscapes produce goods and services, such as fish, wildlife, recreation, climate control, that are not adequately incorporated in their market values. Contingent Valuation (CV) and Energy Analysis (EA) approaches were used to estimate the nonmarket value of forests in Georgia. Both methods yielded similar estimates of approximately $200 ha–1, which was 31% of the total market and nonmarket value of forests. Energy analysis was also used to estimate the nonmarket value of the major land uses in Georgia. Relative contributions of nonmarket value to total value ranged from 0.1% for urban areas to approximately 100% for wetlands. For the state as a whole, nonmarket production of natural and developed ecosystems was estimated at $2.6 billion. This value is comparable to annual marketed agricultural ($2.8 billion) and timber ($4.5 billion) production, both very important industries in Georgia. Changing land use patterns in Georgia and elsewhere are likely to be accompanied by shifts in the relative importances of market and non-market values.  相似文献   
50.
Abstract

Pyrolytic product distribution rates and pyrolysis behavior of tire-derived fuels (TDF) were investigated using thermogravimetric analyzer (TGA) techniques. A TGA was designed and built to investigate the behavior and products of pyrolysis of typical TDF specimens. The fundamental knowledge of TGA analysis and principal fuel analysis are applied in this study. Thermogravimetry of the degradation temperature of the TDF confirms the overall decomposition rate of the volatile products during the depolymerization reaction. The principal fuel analysis (proximate and ultimate analysis) of the pyrolytic char products show the correlation of volatilization into the gas and liquid phases and the existence of fixed carbon and other compounds that remain as a solid char. The kinetic parameters were calculated using least square with minimizing sum of error square technique. The results show that the average kinetic parameters of TDF are the activation energy, E = 1322 ± 244 kJ/mol, a pre-exponential constant of A = 2.06 ± 3.47 × 1010 min?1, and a reaction order n = 1.62 ± 0.31. The model-predicted rate equations agree with the experimental data. The overall TDF weight conversion represents the carbon weight conversion in the sample.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号