首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   4篇
环保管理   25篇
污染及防治   7篇
评价与监测   1篇
  2015年   4篇
  2014年   3篇
  2013年   1篇
  2012年   3篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   4篇
  2005年   2篇
  2004年   4篇
  2003年   1篇
  2000年   2篇
  1998年   2篇
  1987年   1篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
11.
We present a conceptual framework that relates agricultural best management practice (BMP) effectiveness with dominant hydrological flow paths to improve nonpoint source (NPS) pollution management. We use the framework to analyze plot, field and watershed scale published studies on BMP effectiveness to develop transferable recommendations for BMP selection and placement at the watershed scale. The framework is based on the location of the restrictive layer in the soil profile and distinguishes three hydrologic land types. Hydrologic land type A has the restrictive layer at the surface and BMPs that increase infiltration are effective. In land type B1, the surface soil has an infiltration rate greater than the prevailing precipitation intensity, but there is a shallow restrictive layer causing lateral flow and saturation excess overland flow. Few structural practices are effective for these land types, but pollutant source management plans can significantly reduce pollutant loading. Hydrologic land type B2 has deep, well‐draining soils without restrictive layers that transport pollutants to groundwater via percolation. Practices that increased pollutant residence time in the mixing layer or increased plant water uptake were found as the most effective BMPs in B2 land types. Matching BMPs to the appropriate land type allows for better targeting of hydrologically sensitive areas within a watershed, and potentially more significant reductions of NPS pollutant loading.  相似文献   
12.
13.
Leaching of sludge-borne trace elements has been observed in experimental and field studies. The role of microbial processes in the mobilization of trace elements from wastewater sludge is poorly defined. Our objectives were to determine trace element mobilization from sludge subjected to treatments representing microbial acidification, direct chemical acidification and no acidification, and to determine the readsorption potential of mobilized elements using calcareous sand. Triplicate columns (10-cm diameter) for incubation and leaching of sludge had a top layer of digested dewatered sludge (either untreated, acidified with H2SO4, or limed with CaCO3; all mixed with glass beads to prevent ponding) and a lower glass bead support bed. Glass beads in the sludge layer, support layer or both were replaced by calcareous sand in four treatments used for testing the readsorption potential of mobilized elements. Eight sequential 8-day incubation and leaching cycles were operated, each consisting of 7.6 d of incubation at 28 degrees C followed by 8 h of leaching with synthetic acid rain applied at 0.25 cm/h. Leachates were analyzed for trace elements, nitrate and pH, and sludge layer microbial respiration was measured. The largest trace element, nitrate and S losses occurred in treatments with the greatest pH depression and greatest microbial respiration rates. Cumulative leaching losses from both microbial acidification and direct acidification treatments were > 90% of Zn and 64-80% of Cu and Ni. Preventing acidification with sludge layer lime or sand restricted leaching for all trace elements except Mo. Results suggested that the primary microbial role in the rapid leaching of trace elements was acidification, with results from direct acidification being nearly identical to microbial acidification. Microbial activity in the presence of materials that prevented acidification mobilized far lower concentrations of trace elements, with the exception of Mo. Trace elements mobilized by acidification were readsorbed by calcareous sand when present.  相似文献   
14.
Metal mobility at an old, heavily loaded sludge application site   总被引:8,自引:0,他引:8  
This study was undertaken to determine the present distribution and mobility of sludge-applied metals at an old land application site. Trace metals concentrations were determined for soils (using 4 M HNO3 extracts), soil leachates (collected with passive wick lysimeters over a 2.5-year period), and plant tissue from a field site which received a heavy loading of wastewater sludge in 1978 and an adjacent control plot. Blue dye was used to indicate preferential percolate flowpaths in the sludge plot soil for sampling and comparison with bulk soil metals concentrations. After nearly 20 years, metals in the sludge plot leachate were found at significantly greater concentrations than in the control plot, exceeding drinking water standards for Cd, Ni, Zn, and B. Annual metals fluxes were only a fraction of the current soil metal contents, and do not account for the apparent substantial past metals losses determined in a related study. Elevated Cd, Cu, and Ni levels were found in grass growing on the sludge plot. Despite heavy loadings, fine soil texture (silty clay loam) and evidence of past and ongoing metals leaching, examination of the bulk subsoil indicated no statistically significant increases in metals concentrations (even in a calcareous subsoil horizon with elevated pH) when comparing pooled sludge plot soil profiles with controls. Sampling of dyed preferential flow paths in the sludge plot detected only slight increases in several metals. Preferential flow and metal complexation with soluble organics apparently allow leaching without easily detectable readsorption in the subsoil. The lack of significant metal deposition in subsoil may not be reliable evidence for immobility of sludge-applied metals.  相似文献   
15.
ABSTRACT: A curve number based model, Soil and Water Assessment Tool (SWAT), and a physically based model, Soil Moisture Distribution and Routing (SMDR), were applied in a headwater watershed in Pennsylvania to identify runoff generation areas, as runoff areas have been shown to be critical for phosphorus management. SWAT performed better than SMDR in simulating daily streamflows over the four‐year simulation period (Nash‐Sutcliffe coefficient: SWAT, 0.62; SMDR, 0.33). Both models varied streamflow simulations seasonally as precipitation and watershed conditions varied. However, levels of agreement between simulated and observed flows were not consistent over seasons. SMDR, a variable source area based model, needs further improvement in model formulations to simulate large peak flows as observed. SWAT simulations matched the majority of observed peak flow events. SMDR overpredicted annual flow volumes, while SWAT underpredicted the same. Neither model routes runoff over the landscape to water bodies, which is critical to surface transport of phosphorus. SMDR representation of the watershed as grids may allow targeted management of phosphorus sources. SWAT representation of fields as hydrologic response units (HRUs) does not allow such targeted management.  相似文献   
16.
Recent works have indicated that climate change in the northeastern United States is already being observed in the form of shorter winters, higher annual average air temperature, and more frequent extreme heat and precipitation events. These changes could have profound effects on aquatic ecosystems, and the implications of such changes are less understood. The objective of this study was to examine how future changes in precipitation and temperature translate into changes in streamflow using a physically based semidistributed model, and subsequently how changes in streamflow could potentially impact stream ecology. Streamflow parameters were examined in a New York City water supply watershed for changes from model‐simulated baseline conditions to future climate scenarios (2081‐2100) for ecologically relevant factors of streamflow using the Indicators of Hydrologic Alterations tool. Results indicate that earlier snowmelt and reduced snowpack advance the timing and increase the magnitude of discharge in the winter and early spring (November‐March) and greatly decrease monthly streamflow later in the spring in April. Both the rise and fall rates of the hydrograph will increase resulting in increased flashiness and flow reversals primarily due to increased pulses during winter seasons. These shifts in timing of peak flows, changes in seasonal flow regimes, and changes in the magnitudes of low flow can all influence aquatic organisms and have the potential to impact stream ecology.  相似文献   
17.
There is an increasing need for improved process‐based planning tools to assist watershed managers in the selection and placement of effective best management practices (BMPs). In this article, we present an approach, based on the Water Erosion Prediction Project model and a pesticide transport model, to identify dominant hydrologic flow paths and critical source areas for a variety of pollutant types. We use this approach to compare the relative impacts of BMPs on hydrology, erosion, sediment, and pollutant delivery within different landscapes. Specifically, we focus on using this approach to understand what factors promoted and/or hindered BMP effectiveness at three Conservation Effects Assessment Project watersheds: Paradise Creek Watershed in Idaho, Walnut Creek Watershed in Iowa, and Goodwater Creek Experimental Watershed in Missouri. These watersheds were first broken down into unique land types based on soil and topographic characteristics. We used the model to assess BMP effectiveness in each of these land types. This simple process‐based modeling approach provided valuable insights that are not generally available to planners when selecting and locating BMPs and helped explain fundamental reasons why long‐term improvement in water quality of these three watersheds has yet to be completely realized.  相似文献   
18.
Pathogen contamination of waterways is a serious concern in dairy farming areas where livestock waste is applied to agricultural fields. As an alternative, a biodrying composting system dries collected livestock waste, reduces the strong odors, and has been proposed as a means of reducing, and even eliminating pathogens present in the waste. Therefore, the survival of pathogens in a biodrying composting system was investigated. Dairy farm livestock waste was piled in a biodrying storage shed where forced aeration and natural decomposition processes heated a major portion of the waste pile to temperatures exceeding 55 degrees C. Ascaris suum eggs were used as the surrogate species and inoculated into special chambers and placed at three different elevations at different intervals along the length of the pile. Control chambers were stored in water at 4 degrees C in the laboratory. Both compost and control chambers were removed at Day 4, 8, 12, 16, and 20. The eggs were extracted from the chamber medium and analyzed for viability. No viable eggs were recovered from any of the chambers removed from the compost pile, while >or=90% viability was observed in the control chambers. High temperatures and continued drying were the major contributing factors to the inactivation of the helminth eggs. The complete inactivation of A. suum eggs by the biodrying process encourages the storage and treatment of manure to high temperatures and reduced moisture conditions before field spreading to reduce the risk of harmful pathogens contaminating waterways and potential drinking water supplies.  相似文献   
19.
Spectral confocal microscope visualizations of microsphere movement in unsaturated porous media showed that attachment at the Air Water Solid (AWS) interface was an important retention mechanism. These visualizations can aid in resolving the functional form of retention rates of colloids at the AWS interface. In this study, soil adsorption isotherm equations were adapted by replacing the chemical concentration in the water as independent variable by the cumulative colloids passing by. In order of increasing number of fitted parameters, the functions tested were the Langmuir adsorption isotherm, the Logistic distribution, and the Weibull distribution. The functions were fitted against colloid concentrations obtained from time series of images acquired with a spectral confocal microscope for three experiments performed where either plain or carboxylated polystyrene latex microspheres were pulsed in a small flow chamber filled with cleaned quartz sand. Both moving and retained colloids were quantified over time. In fitting the models to the data, the agreement improved with increasing number of model parameters. The Weibull distribution gave overall the best fit. The logistic distribution did not fit the initial retention of microspheres well but otherwise the fit was good. The Langmuir isotherm only fitted the longest time series well. The results can be explained that initially when colloids are first introduced the rate of retention is low. Once colloids are at the AWS interface they act as anchor point for other colloids to attach and thereby increasing the retention rate as clusters form. Once the available attachment sites diminish, the retention rate decreases.  相似文献   
20.
Silage bunker runoff can be a very polluting substance and is increasingly being treated by vegetative treatment areas (VTAs), but little information exists regarding nutrient removal performance of systems receiving this wastewater. Nutrient transport through the shallow subsurface of three VTAs (i.e. one VTA at Farm WNY and two VTAs at Farm CNY) in glaciated soils containing a restrictive layer (i.e., fragipan) was assessed using a mass balance approach. At Farm WNY, the mass removal of ammonium was 63%, nitrate was 0%, and soluble reactive phosphorus (SRP) was 39%. At Farm CNY, the mass removal of ammonium was 79% in the West VTA, but nitrate and SRP increased by 200% and 533%, respectively. Mass removal of ammonium was 67% in the East VTA at Farm CNY; nitrate removal was 86% and SRP removal was 88%. The East VTA received a much higher nutrient loading, which was attributed to a malfunctioning low-flow collection apparatus within the settling basin. Results demonstrate that nutrient reduction mechanisms other than vegetative uptake can be significant within VTAs. Even though increases in nitrate mass were observed, concentrations in 1.65m deep wells indicated that groundwater impairment from leaching of nitrate was not likely. These results offer one of the first evaluations of VTAs treating silage bunker runoff, and highlight the importance of capturing concentrated low flows in VTA systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号