首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   4篇
环保管理   25篇
污染及防治   7篇
评价与监测   1篇
  2015年   4篇
  2014年   3篇
  2013年   1篇
  2012年   3篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   4篇
  2005年   2篇
  2004年   4篇
  2003年   1篇
  2000年   2篇
  1998年   2篇
  1987年   1篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
21.
Due to geochemical processes, peat soils often have elevated concentrations of trace elements, which are gradually released following drainage for agriculture. Our objectives were to use incubation temperatures to vary microbial activity in two metalliferous peats (M7 acidic peat and M3 neutral peat) from the Elba, New York region, and to use periodic leaching to assess the extent of trace element release from these soils. Dried soils were mixed with glass beads to maintain aeration, moistened, and incubated at 4, 16, 28, and 37 degrees C in 10-cm-diameter x 8-cm-tall columns. Five incubation-leaching cycles were performed, each consisting of 7.3 d of incubation (28 d for the final cycle) followed by 16 h of leaching with synthetic acid rain at 2.5 mm h(-1). Microbial activity was determined initially and after the final leaching by measuring C mineralization following glucose stimulation. Cumulative respiration results were ranked 28 > 16 > 4 > 37 degrees C, with M7 acidic peat respiration values greater than M3 neutral peat at each temperature. Initial leachate pH levels were between 2 and 4, with acidification less pronounced and shorter-lived for the M3 peat. Leachate S, dissolved organic carbon (DOC), NO3-N, and trace elements declined with successive leachings (rebounding slightly in the final M3 leachate), with concentrations typically greater in the M7 leachate. Elemental losses followed the same general ranking (28 > 16 > 4 > 37 degrees C); losses at 28 degrees C were 15 to 22% for As, Cd, Ni, and Zn from the M7 peat; losses from M3 were comparable only for Cu (1%) and Ni (19%). The correlation of respiration with S, DOC, and trace elements losses indicates that microbial processes mediated the release of trace elements in both peat soils. Neutral M3 peat pH levels limited losses of most analytes.  相似文献   
22.
The difficulty of determining transient fluid contents in a soil–oil–water system is hampering an understanding of the system's flow characteristics. In this paper, we describe a light transmission method (LTM) which can rapidly obtain oil and water contents throughout a large two-dimensional flow field of silica sand. By appropriately coloring the water with 0.005% FD&C blue #1, the hue of the transmitted light is found to be directly related to the water content within the porous media. The hue provides a high resolution measurement of the water and oil contents in transient flow fields (such as unstable flow). Evaluation of the reliability of LTM was assessed by checking the mass balance for a known water injection and its utility in visualizing a whole flow field was exemplified for unstable fingered flow by comparing fluid contents to those obtained with synchrotron X-ray radiation.  相似文献   
23.
Spectral confocal microscope visualizations of microsphere movement in unsaturated porous media showed that attachment at the Air Water Solid (AWS) interface was an important retention mechanism. These visualizations can aid in resolving the functional form of retention rates of colloids at the AWS interface. In this study, soil adsorption isotherm equations were adapted by replacing the chemical concentration in the water as independent variable by the cumulative colloids passing by. In order of increasing number of fitted parameters, the functions tested were the Langmuir adsorption isotherm, the Logistic distribution, and the Weibull distribution. The functions were fitted against colloid concentrations obtained from time series of images acquired with a spectral confocal microscope for three experiments performed where either plain or carboxylated polystyrene latex microspheres were pulsed in a small flow chamber filled with cleaned quartz sand. Both moving and retained colloids were quantified over time. In fitting the models to the data, the agreement improved with increasing number of model parameters. The Weibull distribution gave overall the best fit. The logistic distribution did not fit the initial retention of microspheres well but otherwise the fit was good. The Langmuir isotherm only fitted the longest time series well. The results can be explained that initially when colloids are first introduced the rate of retention is low. Once colloids are at the AWS interface they act as anchor point for other colloids to attach and thereby increasing the retention rate as clusters form. Once the available attachment sites diminish, the retention rate decreases.  相似文献   
24.
未来地下水资源短缺,特别是由于地面沉降、地表退化、海平面上升等引起的地下水位下降,将对沿海地区的地质环境及人类的生存发展产生极大的影响。通过对崇明地区地下水资源利用现状以及影响地下水位下降的影响因素分析,提出了改善传统的灌溉系统来减少地下水资源的使用、海岸沿线修建人工湖泊防止海水入侵、鼓励农民大面积种植水稻、制定管理措施严格控制地下水的开采总量、进一步加强崇明岛地面沉降动态监测与研究等相应的防范措施。强调控制地下水位的下降,以减轻淡水资源短缺所造成的危害,具有特殊而重要的意义。  相似文献   
25.
The effect of sludge processing (digested dewatered, pelletized, alkaline-stabilized, composted, and incinerated), soil type and initial soil pH on trace metal mobility was examined using undisturbed soil columns. Soils tested were Hudson silt loam (Glossaquic Hapludalf) and Arkport fine sandy loam (Lamellic Hapludalf), at initial pH levels of 5 and 7. Sludges were applied during four accelerated cropping cycles (215 tons/ha cumulative application for dewatered sludge; equivalent rates for other sludges), followed by four post-application cycles. Also examined (with no sludge applications) were Hudson soil columns from a field site that received a heavy loading of sludge in 1978. Romaine (Lactuca sativa) and oats (Avena sativa) were planted in alternate cycles, with oats later replaced by red clover (Trifolium pratense). Soil columns were watered with synthetic acid rainwater, and percolates were analyzed for trace metals (ICP spectroscopy), electrical conductivity and pH. Percolate metal concentrations varied with sludge and soil treatments. Composted sludge and ash had the lowest overall metal mobilities. Dewatered and pelletized sludge had notable leaching of Ni, Cd and Zn in Arkport soils, especially at low pH. Alkaline-stabilized sludge had the widest range of percolate metals (relatively insensitive to soils) including Cu, Ni, B and Mo. Old site column percolate concentrations showed good agreement with previous field data. Little leaching of P was observed in all cases. Cumulative percolate metal losses for all treatments were low relative to total applied metals. Leachate and soil pH were substantially depressed in dewatered and pelletized sludge soil columns and increased for alkaline-stabilized and ash treatments.  相似文献   
26.
Very few hydrological models commonly used in watershed management are appropriate for simulating the saturation excess runoff. The Soil Moisture Routing model (SMR) was developed specifically to predict saturation excess runoff from variable source areas, especially for areas where shallow interflow controls saturation. A recent version of SMR was applied to two rural catchments in the Catskill Mountains to evaluate its ability to simulate the hydrology of these systems. Only readily available meteorological, topographical, and landuse information from published literature and governmental agencies was used. Measured and predicted streamflows showed relatively good agreement; the average Nash–Sutcliffe efficiency for the two watersheds were R 2=72% and R 2=63%. Distributed soil moisture contents and the locations of hydrologically sensitive areas were also predicted well.  相似文献   
27.
ABSTRACT: Identifying phosphorus (P) source areas and transport pathways is a key step in decreasing P loading to natural water systems. This study compared the effects of two modeled runoff generation processes ‐ saturation excess and infiltration excess ‐ on total phosphorus (TP) and soluble reactive phosphorus (SRP) concentrations in 10 catchment streams of a Catskill mountain watershed in southeastern New York. The spatial distribution of runoff from forested land and agricultural land was generated for both runoff processes; results of both distributions were consistent with Soil Conservation Service‐Curve Number (SCS‐CN) theory. These spatial runoff distributions were then used to simulate stream concentrations of TP and SRP through a simple equation derived from an observed relation between P concentration and land use; empirical results indicate that TP and SRP concentrations increased with increasing percentage of agricultural land. Simulated TP and SRP stream concentrations predicted for the 10 catchments were strongly affected by the assumed runoff mechanism. The modeled TP and SRP concentrations produced by saturation excess distribution averaged 31 percent higher and 42 percent higher, respectively, than those produced by the infiltration excess distribution. Misrepresenting the primary runoff mechanism could not only produce erroneous concentrations, it could fail to correctly locate critical source areas for implementation of best management practices. Thus, identification of the primary runoff mechanism is critical in selection of appropriate models in the mitigation of nonpoint source pollution. Correct representation of runoff processes is also critical in the future development of biogeochemical transport models, especially those that address nutrient fluxes.  相似文献   
28.
Solute concentration and soluble dye studies inferring that preferential flow accelerates field-scale contaminant transport are common but flux measurements quantifying its impact are essentially nonexistent. A tile-drain facility was used to determine the influence of matrix and preferential flow processes on the flux of mobile tracers subjected to different irrigation regimes (4.4 and 0.89 mm h(-1)) in a silt loam soil. After tile outflow reached steady state either bromide (Br; 280 kg ha(-1)) or pentafluorobenzoic acid (PFBA; 121 kg ha(-1)) was applied through the irrigation system inside a shed (3.5 x 24 m). Bromide fluxes were monitored at an irrigation rate of 4.4 mm h(-1) while PFBA fluxes were monitored at an irrigation rate of 0.89 mm h(-1). At 4.4 mm h(-1) nearly one-third of the surface-applied Br was recovered in the tile line after only 124 mm of irrigation and was poorly fit by the one-dimensional convective-dispersive equation (CDE). On the other hand, the one-dimensional CDE fit the main PFBA breakthrough pattern almost perfectly, suggesting the PFBA transport was dominated by matrix flow. Furthermore, after 225 mm of water had been applied, less than 2% of the applied PFBA had been leached through the soil compared with more than 59% of the applied Br. This study demonstrates that the methodology of applying a narrow strip of chemical to a tile drain facility is appropriate for quantifying chemical fluxes at the small-field scale and also suggests that there may be a critical input flux whereby preferential flow is initiated.  相似文献   
29.
A simple mathematical model for initial screening is presented that can aid in evaluating the relative risk to groundwater from applying nonpolar synthetic organic chemicals to soil. The basic premise is that the magnitude of the quotient of the chemical concentration of the water entering the aquifer and the maximum allowable concentration (as established by EPA or Health Departments) represents the health risk of a chemical. The chemical concentration of the soil water is estimated based on conservative, simplifying assumptions and requires only readily available data such as: basic soil properties (organic matter and saturated hydraulic conductivity), organic chemical properties (octanol-water partition coefficient and degradation rate) and environmental factors (recharge rate and depth to groundwater).The methodology was applied to assess the relative risk of organic chemicals in municipal sewage sludge and pesticides applied to agricultural land. The results are realistic.  相似文献   
30.
In nondegraded watersheds of humid climates, subsurface flow patterns determine where the soil saturates and where surface runoff is occurring. Most models necessarily use infiltration‐excess (i.e., Hortonian) runoff for predicting runoff and associated constituents because subsurface flow algorithms are not included in the model. In this article, we modify the Water Erosion Prediction Project (WEPP) model to simulate subsurface flow correctly and to predict the spatial and temporal location of saturation, the associated lateral flow and surface runoff, and the location where the water can re‐infiltrate. The modified model, called WEPP‐UI, correctly simulated the hillslope drainage data from the Coweeta Hydrologic Laboratory hillslope plot. We applied WEPP‐UI to convex, concave, and S‐shaped hillslope profiles, and found that multiple overland flow elements are needed to simulate distributed lateral flow and runoff well. Concave slopes had the greatest runoff, while convex slopes had the least. Our findings concur with observations in watersheds with saturation‐excess overland flow that most surface runoff is generated on lower concave slopes, whereas on convex slopes runoff infiltrates before reaching the stream. Since the WEPP model is capable of simulating both saturation‐excess and infiltration‐excess runoff, we expect that this model will be a powerful tool in the future for managing water quality.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号