首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   287篇
  免费   5篇
  国内免费   1篇
安全科学   16篇
废物处理   12篇
环保管理   58篇
综合类   56篇
基础理论   84篇
环境理论   1篇
污染及防治   37篇
评价与监测   15篇
社会与环境   7篇
灾害及防治   7篇
  2023年   9篇
  2022年   4篇
  2021年   6篇
  2020年   13篇
  2019年   7篇
  2018年   12篇
  2017年   11篇
  2016年   21篇
  2015年   9篇
  2014年   17篇
  2013年   17篇
  2012年   19篇
  2011年   21篇
  2010年   18篇
  2009年   20篇
  2008年   12篇
  2007年   14篇
  2006年   11篇
  2005年   9篇
  2004年   9篇
  2003年   7篇
  2002年   6篇
  2001年   7篇
  2000年   1篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1993年   2篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
  1980年   1篇
  1972年   1篇
排序方式: 共有293条查询结果,搜索用时 31 毫秒
21.
Objectives: Nationally, animal–motor vehicle crashes (AVCs) account for 4.4% of all types of motor vehicle crashes (MVCs). AVCs are a safety risk for drivers and animals and many National Park Service (NPS) units (e.g., national park, national monument, or national parkway) have known AVC risk factors, including rural locations and substantial animal densities. We sought to describe conditions and circumstances involving AVCs to guide traffic and wildlife management for prevention of AVCs in select NPS units.

Methods: We conducted an analysis using NPS law enforcement MVC data. An MVC is a collision involving an in-transit motor vehicle that occurred or began on a public roadway. An AVC is characterized as a collision between a motor vehicle and an animal. A non-AVC is a crash between a motor vehicle and any object other than an animal or noncollision event (e.g., rollover crash). The final data for analysis included 54,068 records from 51 NPS units during 1990–2013. Counts and proportions were calculated for categorical variables and medians and ranges were calculated for continuous variables. We used Pearson’s chi-square to compare circumstances of AVCs and non-AVCs. Data were compiled at the park regional level; NPS parks are assigned to 1 of 7 regions based on the park’s location.

Results: AVCs accounted for 10.4% (5,643 of 54,068) of all MVCs from 51 NPS units. The Northeast (2,021 of 5,643; 35.8%) and Intermountain (1,180 of 5,643; 20.9%) regions had the largest percentage of the total AVC burden. November was the peak month for AVCs across all regions (881 of 5,643; 15.6%); however, seasonality varied by park geographic regions. The highest counts of AVCs were reported during fall for the National Capital, Northeast/Southeast, and Northeast regions; winter for the Southeast region; and summer for Intermountain and Pacific West regions.

Conclusions: AVCs represent a public health and wildlife safety concern for NPS units. AVCs in select NPS units were approximately 2-fold higher than the national percentage for AVCs. The peak season for AVCs varied by NPS region. Knowledge of region-specific seasonality patterns for AVCs can help NPS staff develop mitigation strategies for use primarily during peak AVC months. Improving AVC data collection might provide NPS with a more complete understanding of risk factors and seasonal trends for specific NPS units. By collecting information concerning the animal species hit, park managers can better understand the impacts of AVC to wildlife population health.  相似文献   

22.
23.
Worldwide, invasive species are a leading driver of environmental change across terrestrial, marine, and freshwater environments and cost billions of dollars annually in ecological damages and economic losses. Resources limit invasive‐species control, and planning processes are needed to identify cost‐effective solutions. Thus, studies are increasingly considering spatially variable natural and socioeconomic assets (e.g., species persistence, recreational fishing) when planning the allocation of actions for invasive‐species management. There is a need to improve understanding of how such assets are considered in invasive‐species management. We reviewed over 1600 studies focused on management of invasive species, including flora and fauna. Eighty‐four of these studies were included in our final analysis because they focused on the prioritization of actions for invasive species management. Forty‐five percent (n = 38) of these studies were based on spatial optimization methods, and 35% (n = 13) accounted for spatially variable assets. Across all 84 optimization studies considered, 27% (n = 23) explicitly accounted for spatially variable assets. Based on our findings, we further explored the potential costs and benefits to invasive species management when spatially variable assets are explicitly considered or not. To include spatially variable assets in decision‐making processes that guide invasive‐species management there is a need to quantify environmental responses to invasive species and to enhance understanding of potential impacts of invasive species on different natural or socioeconomic assets. We suggest these gaps could be filled by systematic reviews, quantifying invasive species impacts on native species at different periods, and broadening sources and enhancing sharing of knowledge.  相似文献   
24.
Effects of benthic macrofauna (Corophium volutator, Hydrobia sp., Nereis virens) on benthic community metabolism were studied over a 65-d period in microcosms kept in either light/dark cycle (L/D-system) or in continuous darkness (D-system). Sediment and animals were collected in January 1986 in the shallow mesohaline estuary, Norsminde Fjord, Denmark. The primary production in the L/D-system after 10 d acted as a stabilizing agent on the O2 and CO2 flux rates, whereas the D-system showed decreasing O2 and CO2 flux throughout the period. Mean O2 uptake over the experimental period ranged from 0.38 to 1.24 mmol m–2 h–1 and CO2 release varied from 0.80 to 1.63 mmol m–2 h–1 in both systems. The presence of macrofauna stimulated community respiration rates measured in darknes, 1.4 to 3.0 and 0.9 to 2.0 times for O2 and CO2, respectively. In contrast, macrofauna lowered primary production. Gross primary production varied from 1.06 to 2.26 mmol O2 m–2 h–1 and from 1.26 to 2.62 mmol CO2 m–2 h–1. The community respiratory quotient (CRQ, CO2/O2) was generally higher in the begining of the experiment (0–20 d, mean 1.89) than in the period from Days 20 to 65 (mean 1.38). The L/D-system exhibited lower CRQ (ca. 1) than the D-system. The community photosynthetic quotient varied for both net and gross primary production from 0.64 to 1.03, mean 0.81. The heterotrophic D-system revealed a sharp decrease in the sediment content of chlorophyll a as compared to the initial content. In the autotrophic L/D-system, a significant increase in chlorophyll a concentration was observed in cores lacking animals and cores with C. volutator (The latter species died during the experiment). Due to grazing and other macrofauna activities other cores of the L/D-system exhibited no significant change in chlorophyll a concentration. Community primary production was linearly correlated to the chlorophyll a content in the 0 to 0.5 cm layer. Fluxes of DIN (NH4 ++NO2 +NO3 ) did not reveal significant temporal changes during the experiment. Highest rates were found for the cores containing animals, mainly because of an increased NH4 + flux. The release of DIN decreased significantly due to uptake by benthic microalgae in the L/D-system. No effects of the added macrofauna were found on particulate organic carbon (POC), particulate organic nitrogen (PON), total carbon dioxide (TCO2) and NH4 + in the sediment. The ratio between POC and PON was nearly constant (9.69) in all sediment dephts. The relationship between TCO2 and NH4 + was more complex, with ratios below 2 cm depth similar to those for POC/PON, but with low ratios (3.46) at the sediment surface.  相似文献   
25.
26.
27.
In the statistical modeling of a biological or ecological phenomenon, selecting an optimal model among a collection of candidates is a critical issue. To identify an optimal candidate model, a number of model selection criteria have been developed and investigated based on estimating Kullback’s (Information theory and statistics. Dover, Mineola, 1968) directed or symmetric divergence. Criteria that target the directed divergence include the Akaike (2nd international symposium on information theory. Akadémia Kiadó, Budapest, Hungary, pp 267–281, 1973, IEEE Trans Autom Control AC 19:716–723, 1974) information criterion, AIC, and the “corrected” Akaike information criterion (Hurvich and Tsai in Biometrika 76:297–307, 1989), AICc; criteria that target the symmetric divergence include the Kullback information criterion, KIC, and the “corrected” Kullback information criterion, KICc (Cavanaugh in Stat Probab Lett 42:333–343, 1999; Aust N Z J Stat 46:257–274, 2004). For overdispersed count data, simple modifications of AIC and AICc have been increasingly utilized: specifically, the quasi Akaike information criterion, QAIC, and its corrected version, QAICc (Lebreton et al. in Ecol Monogr 62(1):67–118 1992). In this paper, we propose analogues of QAIC and QAICc based on estimating the symmetric as opposed to the directed divergence: QKIC and QKICc. We evaluate the selection performance of AIC, AICc, QAIC, QAICc, KIC, KICc, QKIC, and QKICc in a simulation study, and illustrate their practical utility in an ecological application. In our application, we use the criteria to formulate statistical models of the tick (Dermacentor variabilis) load on a white-footed mouse (Peromyscus leucopus) in northern Missouri.  相似文献   
28.
Phenological tracking enables positive species responses to climate change   总被引:1,自引:0,他引:1  
Earlier spring phenology observed in many plant species in recent decades provides compelling evidence that species are already responding to the rising global temperatures associated with anthropogenic climate change. There is great variability among species, however, in their phenological sensitivity to temperature. Species that do not phenologically "track" climate change may be at a disadvantage if their growth becomes limited by missed interactions with mutualists, or a shorter growing season relative to earlier-active competitors. Here, we set out to test the hypothesis that phenological sensitivity could be used to predict species performance in a warming climate, by synthesizing results across terrestrial warming experiments. We assembled data for 57 species across 24 studies where flowering or vegetative phenology was matched with a measure of species performance. Performance metrics included biomass, percent cover, number of flowers, or individual growth. We found that species that advanced their phenology with warming also increased their performance, whereas those that did not advance tended to decline in performance with warming. This indicates that species that cannot phenologically "track" climate may be at increased risk with future climate change, and it suggests that phenological monitoring may provide an important tool for setting future conservation priorities.  相似文献   
29.
Male crabs infected by parasitic barnacles (Rhizocephala) are known to be morphologically feminized. Here, we investigate morphological chances in green crabs, Carcinus maenas, induced by the parasitic barnacle Sacculina carcini. Infected males acquire a broader, longer and segmented abdomen, fringed with marginal setae. Copulatory appendages and pereopods are reduced in length, and the chelae become smaller. The feminization show great individual variation. Males with scars from lost externae, the parasites reproductive organ situated under the abdomen, are less modified than males carrying an externa, and the feminization is more pronounced in smaller than in larger males. No super-feminization is evident in female crabs that remain morphologically unaffected by infection. The protective value of a parasitically induced enlargement of the male abdomen may constitute an adaptation that increases parasite longevity. The additional effects on male morphology are viewed as pleiotropic side effects of the main adaptive value of enlarging the abdomen.  相似文献   
30.
Biodiversity goals are becoming increasingly important in stream restoration. Typical models of stream restoration are based on the assumption that if habitat is restored then species will return and ecological processes will re-establish. However, a range of constraints at different scales can affect restoration success. Much of the research in stream restoration ecology has focused on habitat constraints, namely the in-stream and riparian conditions required to restore biota. Dispersal constraints are also integral to determining the timescales, trajectory and potential endpoints of a restored ecosystem. Dispersal is both a means of organism recolonization of restored sites and a vital ecological process that maintains viable populations. We review knowledge of dispersal pathways and explore the factors influencing stream invertebrate dispersal. From empirical and modeling studies of restoration in warm-temperate zones of New Zealand, we make predictions about the timescales of stream ecological restoration under differing levels of dispersal constraints. This process of constraints identification and timescale prediction is proposed as a practical step for resource managers to prioritize and appropriately monitor restoration sites and highlights that in some instances, natural recolonization and achievement of biodiversity goals may not occur.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号