首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   366篇
  免费   19篇
  国内免费   3篇
安全科学   13篇
废物处理   5篇
环保管理   73篇
综合类   56篇
基础理论   102篇
污染及防治   90篇
评价与监测   32篇
社会与环境   15篇
灾害及防治   2篇
  2023年   8篇
  2022年   7篇
  2021年   4篇
  2020年   6篇
  2019年   3篇
  2018年   5篇
  2017年   10篇
  2016年   18篇
  2015年   12篇
  2014年   6篇
  2013年   31篇
  2012年   12篇
  2011年   22篇
  2010年   17篇
  2009年   15篇
  2008年   19篇
  2007年   27篇
  2006年   24篇
  2005年   7篇
  2004年   15篇
  2003年   13篇
  2002年   10篇
  2001年   4篇
  2000年   7篇
  1999年   4篇
  1998年   5篇
  1997年   6篇
  1996年   2篇
  1995年   4篇
  1994年   3篇
  1993年   4篇
  1992年   3篇
  1991年   5篇
  1990年   6篇
  1989年   3篇
  1987年   3篇
  1986年   3篇
  1984年   4篇
  1982年   2篇
  1981年   2篇
  1980年   4篇
  1979年   8篇
  1978年   4篇
  1977年   2篇
  1975年   1篇
  1970年   1篇
  1966年   1篇
  1954年   1篇
  1953年   1篇
  1935年   1篇
排序方式: 共有388条查询结果,搜索用时 15 毫秒
351.
Vegetation change in the American West has been a subject of concern throughout the twentieth century. Although many of the changes have been recorded qualitatively through the use of comparative photography and historical reports, little quantitative information has been available on the regional or watershed scale. It is currently possible to measure change over large areas and determine trends in ecological and hydrological condition using advanced space-based technologies. Specifically, this process is being tested in a community-based watershed in southeast Arizona and northeast Sonora, Mexico using a system of landscape pattern measurements derived from satellite remote sensing, spatial statistics, process modeling, and geographic information systems technology. These technologies provide the basis for developing landscape composition and pattern indicators as sensitive measures of large-scale environmental change and thus may provide an effective and economical method for evaluating watershed condition related to disturbance from human and natural stresses. The project utilizes the database from the North American Landscape Characterization (NALC) project which incorporates triplicate Landsat Multi-Spectral Scanner (MSS) imagery from the early 1970s, mid 1980s, and the 1990s. Landscape composition and pattern metrics have been generated from digital land cover maps derived from the NALC images and compared across a nearly 20-year period. Results about changes in land cover for the study period indicate that extensive, highly connected grassland and desertscrub areas are the most vulnerable ecosystems to fragmentation and actual loss due to encroachment of xerophytic mesquite woodland. In the study period, grasslands and desertscrub not only decreased in extent but also became more fragmented. That is, the number of grassland and desertscrub patches increased and their average patch sizes decreased. In stark contrast, the mesquite woodland patches increased in size, number, and connectivity. These changes have important impact for the hydrology of the region, since the energy and water balance characteristics for these cover types are significantly different. The process demonstrates a simple procedure to document changes and determine ecosystem vulnerabilities through the use of change detection and indicator development, especially in regard to traditional degradation processes that have occurred throughout the western rangelands involving changes of vegetative cover and acceleration of water and wind erosion.  相似文献   
352.
353.
Long-term studies to understand biodiversity changes remain scarce—especially so for tropical mountains. We examined changes from 1911 to 2016 in the bird community of the cloud forest of San Antonio, a mountain ridge in the Colombian Andes. We evaluated the effects of past land-use change and assessed species vulnerability to climate disruption. Forest cover decreased from 95% to 50% by 1959, and 33 forest species were extirpated. From 1959 to 1990, forest cover remained stable, and an additional 15 species were lost—a total of 29% of the forest bird community. Thereafter, forest cover increased by 26% and 17 species recolonized the area. The main cause of extirpations was the loss of connections to adjacent forests. Of the 31 (19%) extirpated birds, 25 have ranges peripheral to San Antonio, mostly in the lowlands. Most still occurred regionally, but broken forest connections limited their recolonization. Other causes of extirpation were hunting, wildlife trade, and water diversion. Bird community changes included a shift from predominantly common species to rare species; forest generalists replaced forest specialists that require old growth, and functional groups, such as large-body frugivores and nectarivores, declined disproportionally. All water-dependent birds were extirpated. Of the remaining 122 forest species, 19 are vulnerable to climate disruption, 10 have declined in abundance, and 4 are threatened. Our results show unequivocal species losses and changes in community structure and abundance at the local scale. We found species were extirpated after habitat loss and fragmentation, but forest recovery stopped extirpations and helped species repopulate. Land-use changes increased species vulnerability to climate change, and we suggest reversing landscape transformation may restore biodiversity and improve resistance to future threats.  相似文献   
354.
The International Union for Conservation of Nature (IUCN) Red List of Threatened Species, a species extinction risk assessment tool, has been guiding conservation efforts for over 5 decades. It is widely assumed to have been instrumental in preventing species from moving closer to extinction and driving recoveries. However, the impact of the IUCN Red List in guiding conservation has not been evaluated. We conducted, transcribed, and coded interviews with experts who use the IUCN Red List across a range of sectors to understand how the list is used in conservation. We developed a theory of change to illustrate how and why change is expected to occur along causal pathways contributing to the long-term goal of the IUCN Red List and an evaluation framework with indicators for measuring the impact of the IUCN Red List in generating scientific knowledge, raising awareness among stakeholders, designating priority conservation sites, allocating funding and resources, influencing development of legislation and policy, and guiding targeted conservation action (key themes). Red-list assessments were the primary input leading to outputs (scientific knowledge, raised awareness), outcomes (better informed priority setting, access to funding and resource availability, improved legislation and policy), and impact (implemented conservation action leading to positive change) that have resulted in achievement of IUCN Red List goals. To explore feasibility of attributing the difference made by the IUCN Red List across themes, we studied increased scientific knowledge, raised awareness, access to funding and resource allocation, and increased conservation activity. The feasibility exploration showed increased scientific knowledge over time identified through positive trends in publications referring to the IUCN Red List in the literature; raised awareness of the list following high IUCN activity identified by peaks in online search activity; an increased proportion of conservation funding bodies requesting IUCN Red List status in the application process; and, based on interviews with Amphibian Specialist Group members, red-list assessments were essential in connecting relevant stakeholders and ensuring conservation action. Although we identified the IUCN Red List as a vital tool in global conservation efforts, it was challenging to measure specific impacts because of its ubiquitous nature. We are the first to identify the influence of the IUCN Red List on conservation.  相似文献   
355.
Vermeij MJ  Sandin SA 《Ecology》2008,89(7):1994-2004
The local densities of heterospecifics and conspecifics are known to have profound effects on the dynamics of many benthic species, including rates of settlement and early post-settlement survivorship. We described the early life history of the Caribbean coral, Siderastrea radians by tracking the population dynamics from recently settled planulae to juveniles. Through three years of observation, settlement correlated with the abundance of other benthic organisms, principally turf algae (negatively) and crustose coralline algae (positively). In addition, adult density showed independent effects on coral settlement and early post-settlement survivorship. Settlement rates increased across low levels of adult cover and saturated at a maximum around 10% cover. Early post-settlement survivorship decreased with adult cover, revealing structuring density dependence in coral settlers. The earliest life stages of corals are defined by low survivorship, with survivorship increasing appreciably with colony size. However, recent settlers (one-polyp individuals, < 1-year-old) are more likely to grow into two-polyp juveniles than older single polyps (> 1-year-old) that were delayed in their development. The early benthic phase of corals is defined by a severe demographic bottleneck for S. radians, with appreciable density-dependent and density-independent effects on survivorship. For effective management and restoration of globally imperiled coral reefs, we must focus more attention on this little studied, but dynamic, early life history period of corals.  相似文献   
356.
In northern Florida, forages are grown in dairy effluent sprayfields to recover excess P. Our purpose was to evaluate five year-round forage systems for their capacity to remove P from a dairy sprayfield. The soil is a Kershaw sand (thermic, uncoated Typic Quartzipsamment). Systems included bermudagrass (Cynodon spp.)-rye (Secale cereale L.) (BR), perennial peanut (Arachis glabrata Benth.)-rye (PR), corn (Zea mays L.)-forage sorghum [Sorghum bicolor (L.) Moench]-rye (CSR), corn-bermudagrass-rye (CBR), and corn-perennial peanut-rye (CPR). Forages were grown for five 12-mo cycles. Effluent P rates were 80, 120, and 165 kg ha-1 cycle-1. The 5-cycle P removal was 67 kg ha-1 cycle-1 for BR, 54 kg ha-1 for CBR, 52 kg for CSR, 45 kg for PR, and 43 for CPR. Removal of P by winter rye was low. There were differences in system rankings among cycles primarily due to changes in the performance of perennial forages. In the first two cycles, BR had the greatest P removal (91 kg ha-1 cycle-1) due to high bermudagrass yield and P concentration. In the first cycle, P removal was lowest for PR (36 kg ha-1) because perennial peanut was slow to establish. In later cycles, P removal for BR declined because bermudagrass yield and P concentration declined. It increased for PR because peanut yield increased. The yield of corn in CBR, CPR, and CSR was consistently high but P concentration was modest (avg. 2.2 g kg-1). Sorghum produced moderate but stable yield and had low P levels (avg. 1.8 g kg-1). Effluent rate marginally affected the performance of most grasses. For P recovery in dairy sprayfields in northern Florida, the best warm-season forage would likely be a high yielding, persistent bermudagrass.  相似文献   
357.
Lee C  Wakeham S  Arnosti C 《Ambio》2004,33(8):565-575
As organic matter produced in the euphotic zone of the ocean sinks through the mesopelagic zone, its composition changes from one that is easily characterized by standard chromatographic techniques to one that is not. The material not identified at the molecular level is called "uncharacterized". Several processes account for this transformation of organic matter: aggregation/disaggregation of particles resulting in incorporation of older and more degraded material; recombination of organic compounds into geomacromolecules; and selective preservation of specific biomacromolecules. Furthermore, microbial activities may introduce new cell wall or other biomass material that is not easily characterized, or they may produce such material as a metabolic product. In addition, black carbon produced by combustion processes may compose a fraction of the uncharacterized organic matter, as it is not analyzed in standard biochemical techniques. Despite these poorly-defined compositional changes that hinder chemical identification, the vast majority of organic matter in sinking particles remains accessible to and is ultimately remineralized by marine microbes.  相似文献   
358.
Khan SJ  Ongerth JE 《Chemosphere》2004,54(3):355-367
A conceptual model is presented for determining which currently prescribed pharmaceutical compounds are most likely to be found in sewage, and for estimating their concentrations, both in raw sewage and after successive stages of secondary sewage treatment. A ranking of the "top-50" pharmaceutical compounds (by total mass dispensed) in Australia over the 1998 calendar year was prepared. Information on the excretion ratios and some metabolites of the pharmaceuticals enabled prediction of the overall rates of excretion into Australian sewage. Mass-balance and fugacity modelling, applied to sewage generation and to a sewage treatment plant, allowed calculation of predicted concentrations of the compounds in raw, primary and secondary treated sewage effluents. Twenty nine of the modelled pharmaceutical residuals were predicted to be present in raw sewage influent at concentrations of 1 microgl(-1) or greater. Twenty of the compounds were predicted to remain in secondary effluent at concentrations of 1 microgl(-1) or greater.  相似文献   
359.
The world's tropical forests are being cleared rapidly, and ecologists claim this is causing a massive loss of species. This claim has its critics. Can we predict extinctions from the extent of deforestation? We mapped the percentage of deforestation on the islands of the Philippines and Indonesia and counted the number of bird species found only on these islands. We then used the species-area relationship to calculate the number of species predicted to become globally extinct following deforestation on these islands. Next, we counted the numbers of insular southeast Asian endemic bird species considered threatened—i.e., those having "a high probability of extinction in the wild in the medium-term future"—in the latest summary Red Data Book. The numbers of extinctions predicted from deforestation and the numbers of species actually threatened are strikingly similar. This suggests we can estimate the size of the extinction crisis in once-forested regions from the extent of deforestation. The numbers of extinctions will be large. Without rapid and effective conservation, many of the species endemic to insular southeast Asia will soon be lost.  相似文献   
360.
Distribution patterns, population structure and biomass of the euphausiidsNyctiphanes capensis andEuphausia hanseni were examined off the coast of Namibia, southwest Africa, in relation to temperature, depth and season, from data collected on nine surveys from September 1982 to March 1984. High densities ofN. capensis were found in the shallow coastal waters (<200 m), with the biomass of adults ranging from 675 to 5 706 mg dry wt m–2. For adultE. hanseni, the biomass was an order of magnitude lower, ranging from 65 to 505 mg dry wt m–2, with most specimens occurring over the shelf break at depths of 200 to 1000 m. These distribution patterns remained relatively constant throughout the year, despite seasonal differences in upwelling events. Both species displayed continuous breeding, with 43 to 82% of the adult femaleE. hanseni being fertilized, while a much lower proportion ofN. capensis females were reproductively active (0.5 to 26%). Different breeding strategies were adopted by these two euphausiid species, withE. hanseni producing frequent broods (14.8 broods in 6 mo) consisting of relatively large eggs which are released into the sea, andN. capensis exhibiting a lower frequency of spawning, with broods consisting of large numbers of relatively small eggs, protected by a brood pouch. These strategies enable both species to maintain high densities throughout the year in a fluctuating physical environment. Growth rate estimated from size-frequency distributions were 0.003 to 0.063 mm d–1 forN. capensis and 0.077 to 0.083 mm d–1 forE. hanseni, suggesting an adult lifespan of approximately 6 mo for both species. Maximum sizes were attained in September, withN. capensis reaching a total length of 21 mm (in contrast to all previous studies onN. capensis, where the maximum size recorded was only 13 mm total length) andE. hanseni a total length of 33 mm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号