首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27689篇
  免费   422篇
  国内免费   484篇
安全科学   959篇
废物处理   1193篇
环保管理   4281篇
综合类   4170篇
基础理论   7212篇
环境理论   10篇
污染及防治   7259篇
评价与监测   1698篇
社会与环境   1615篇
灾害及防治   198篇
  2023年   136篇
  2022年   274篇
  2021年   251篇
  2020年   250篇
  2019年   236篇
  2018年   431篇
  2017年   412篇
  2016年   639篇
  2015年   503篇
  2014年   689篇
  2013年   2259篇
  2012年   951篇
  2011年   1350篇
  2010年   1065篇
  2009年   1167篇
  2008年   1321篇
  2007年   1353篇
  2006年   1166篇
  2005年   964篇
  2004年   938篇
  2003年   963篇
  2002年   873篇
  2001年   1084篇
  2000年   819篇
  1999年   480篇
  1998年   364篇
  1997年   368篇
  1996年   374篇
  1995年   438篇
  1994年   343篇
  1993年   333篇
  1992年   315篇
  1991年   291篇
  1990年   305篇
  1989年   302篇
  1988年   248篇
  1987年   222篇
  1986年   221篇
  1985年   248篇
  1984年   284篇
  1983年   232篇
  1982年   269篇
  1981年   243篇
  1980年   201篇
  1979年   222篇
  1978年   147篇
  1977年   151篇
  1975年   138篇
  1974年   145篇
  1972年   137篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
22.
23.
Concerns over data quality have raised many questions related to sampling soils for volatile organic compounds (VOCs). This paper was prepared in response to some of these questions and concerns expressed by Remedial Project Managers (RPMs) and On-Scene Coordinators (OSCs). The following questions are frequently asked:
  1. Is there a specific device suggested for sampling soils for VOCs?
  2. Are there significant losses of VOCs when transferring a soil sample from a sampling device (e.g., split spoon) into the sample container?
  3. What is the best method for getting the sample from the split spoon (or other device) into the sample container?
  4. Are there smaller devices such as subcore samplers available for collecting aliquots from the larger core and efficiently transferring the sample into the sample container?
  5. Are certain containers better than others for shipping and storing soil samples for VOC analysis?
  6. Are there any reliable preservation procedures for reducing VOC losses from soil samples and for extending holding times?
Guidance is provided for selecting the most effective sampling device for collecting samples from soil matrices. The techniques for sample collection, sample handling, containerizing, shipment, and storage described in this paper reduce VOC losses and generally provide more representative samples for volatile organic analyses (VOA) than techniques in current use. For a discussion on the proper use of sampling equipment the reader should refer to other sources (Acker, 1974; U.S. EPA, 1983; U.S. EPA, 1986a). Soil, as referred to in this report, encompasses the mass (surface and subsurface) of unconsolidated mantle of weathered rock and loose material lying above solid rock. Further, a distinction must be made as to what fraction of the unconsolidated material is soil and what fraction is not. The soil component here is defined as all mineral and naturally occurring organic material that is 2 mm or less in size. This is the size normally used to differentiate between soils (consisting of sands, silts, and clays) and gravels. Although numerous sampling situations may be encountered, this paper focuses on three broad categories of sites that might be sampled for VOCs:
  1. Open test pit or trench.
  2. Surface soils (<5 ft in depth).
  3. Subsurface soils (>5 ft in depth).
  相似文献   
24.
25.
A sonication method was compared with Soxhlet extraction for recovering polycyclic aromatic hydrocarbons (PAH) from a clay soil that had been contaminated with tar materials for several decades. Using sonication over an 8 h extraction period, maximum extraction of the 16 US EPA priority PAH was obtained with dichloromethane (DCM)-acetone (1 + 1). The same procedure using hexane-acetone (1 + 1) recovered 86% of that obtained using DCM-acetone (1 + 1). PAH recovery was dependent on time of extraction up to a period of 8 h. The sonication procedure showed that individual PAH are extracted at differing rates depending on the number of fused rings in the molecule. Soxhlet extraction [with DCM-acetone (1 + 1)] over an 8 h period recovered 95% of the PAH removed by the sonication procedure using DCM-acetone (1 + 1), indicating that rigorous sonication can achieve PAH recoveries similar to those obtained by Soxhlet extraction. The lower recovery with the Soxhlet extraction was explained by the observed losses of the volatile PAH components after 1-4 h of extraction. The type of solvent used, the length of time of extraction and extraction method influenced the quantification of PAH in the soil. Therefore, the study has implications for PAH analyses in soils and sediments, and particularly for contaminated site assessments where the data from commercial laboratories are being used. The study emphasizes the importance of establishing (and being consistent in the application of) a vigorous extraction, particularly for commercial laboratories that handle samples of soil in batches (at different times) from a single site investigation or remediation process. The strong binding of PAH to soil, forming aged residues, has significant implications for extraction efficiency. This paper illustrates the problem of the underestimation of PAH using the US EPA method 3550, specifically where a surrogate spike is routinely employed and the efficiency of the extraction procedure for aged residues is unknown. The implications of this study for environmental monitoring, particularly where numerous batches of samples from a single site assessment or remediation program are submitted to commercial laboratories, is that it would be advisable for these laboratories to check their existing method's extraction efficiencies by conducting a time course sonication extraction on their particular soil to determine the optimum extraction time.  相似文献   
26.
27.
The environmental fate and movement of herbicides widely used for weed control in corn are assessed for a deep loess soil in southwestern Iowa. Beginning in the early 1980s, the herbicide-based weed control program emphasized the application of atrazine (ATR) or cyanazine (CYN) and metolachlor (MET) for both broadleaf and grass control. Between 1992 and 1995, concentrations of ATR, desethylatrazine (DEA), desisopropylatrazine (DIA), CYN and MET were measured in rainwater, both shallow and deep vadose zone water, and well water. Results show that the frequency of herbicide detections and the range and distribution of occurrences are dependent upon both landscape position and temporal inputs of recharge water from rainfall. Generally, DIA was observed more frequently and in higher mean concentration in well water than DEA, while DEA was observed more frequently than DIA in vadose zone groundwater. A chromatographic analogy is suggested to explain the occurrence patterns observed for both parent herbicide and degradation products within the unsaturated zone water. Analysis of rainwater samples collected during this time also revealed low concentrations of ATR, CYN and MET, with the timing of the detections indicative of non-local transport. Results show that the deep loess soil conducts both water and agricultural chemicals relatively rapidly and as such represents a production system which is vulnerable to contamination of shallow groundwater by herbicide-derived chemicals. Results also illustrate the importance of including major herbicide degradation products in water resource impact assessment studies.  相似文献   
28.
Radon-222 is a naturally occurring radioactive gas in the uranium-238 decay series that has traditionally been called, simply, radon. The lung cancer risks associated with the inhalation of radon decay products have been well documented by epidemiological studies on populations of uranium miners.The realization that radon is a public health hazard has raised the need for sampling and analytical guidelines for field personnel. Several sampling and analytical methods are being used to document radon concentrations in ground water and surface water worldwide but no convenient, single set of guidelines is available. Three different sampling and analytical methods-bubbler, liquid scintillation, and field screening-are discussed in this paper. The bubbler and liquid scintillation methods have high accuracy and precision, and small analytical method detection limits of 0.2 and 10 pCi/l (picocuries per liter), respectively. The field screening method generally is used as a qualitative reconnaissance tool.  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号