首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   2篇
  国内免费   7篇
安全科学   2篇
废物处理   2篇
环保管理   6篇
综合类   43篇
基础理论   11篇
污染及防治   28篇
评价与监测   8篇
  2023年   2篇
  2022年   2篇
  2021年   4篇
  2020年   4篇
  2019年   3篇
  2018年   2篇
  2017年   1篇
  2016年   7篇
  2015年   5篇
  2014年   5篇
  2013年   6篇
  2012年   6篇
  2011年   10篇
  2010年   5篇
  2009年   8篇
  2008年   5篇
  2007年   3篇
  2006年   4篇
  2005年   5篇
  2004年   5篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  1985年   1篇
  1961年   1篇
  1959年   1篇
排序方式: 共有100条查询结果,搜索用时 31 毫秒
71.
Copper leaching from a disc brake wear debris sample was examined in a variety of aqueous solutions to simulate potential leaching processes during rain events and in surface waters. Synthetic rainwater leached 40% of the total copper present in the brake wear debris into solution after 18 h in batch reactors, which was approximately three times more copper than that extracted by the US Environmental Protection Agency's Synthetic Precipitation Leaching Procedure. Formate and acetate were responsible for the enhanced copper leaching, as demonstrated by higher average amounts of leached copper in synthetic rainwater with- versus without the organic acids (40 versus 31% recovery). This observation suggests leaching tests that do not incorporate the appropriate types and concentrations of organic ligands present in rainwater will likely underestimate copper mobilization from brake wear debris during rain events. Leaching of copper from the brake wear debris ranged from 23 to 40% in solutions containing 3 to 15 mg C L(-1) dissolved humic substances, and was higher still in solutions containing relatively high concentrations of the synthetic metal chelating agent ethylenediaminetetraacetic acid. Static pH tests demonstrated that copper leaching from brake wear debris is highly pH dependent, with more leaching occurring at lower solution pH values. Leaching rate studies revealed that equilibrium generally was not attained within 48 h in the model solutions, indicating that additional copper can be expected to be released in environments where brake wear debris is exposed to long-term leaching processes.  相似文献   
72.
As social interest in the environmental conservation and ecological restoration has recently increased, more research works have been done to resolve problems concerning environmental management of estuaries. In this study, a three-dimensional numerical model, Environmental Fluid Dynamics Code (EFDC) was used in the analysis of the salinity intrusion characteristics in the downstream of Geum River. The numerical simulation was performed to investigate the influence range for salinity intrusion when the gates were fully opened. The conditions used for simulation were the four flow regimes in Geum River Basin, Korea. Results indicated that the ranges of salinity intrusion from the barrage were 50.72 km (drought flow), 48.87 km (low flow), 46.56 km (normal flow) and 42.10 km (flood flow). These results indicated that the EFDC model used for numerical simulation has high accuracy. The result concluded in this study can be used as a basis in understanding the extent of salinity intrusion e ects at di erent flow rates.  相似文献   
73.
This research measured the mortality rates of pathogen indicator microorganisms discharged from various point and non-point sources in an urban area.Water samples were collected from a domestic sewer,a combined sewer overflow,the effluent of a wastewater treatment plant,and an urban river.Mortality rates of indicator microorganisms in sediment of an urban river were also measured.Mortality rates of indicator microorganisms in domestic sewage,estimated by assuming first order kinetics at 20°C were 0.197 day -1 ,0.234 day -1 ,0.258 day -1 and 0.276 day -1 for total coliform,fecal coliform,Escherichia coli,and fecal streptococci,respectively.Effects of temperature,sunlight irradiation and settlement on the mortality rate were measured.Results of this research can be used as input data for water quality modeling or can be used as design factors for treatment facilities.  相似文献   
74.
Batch and continuous experiments using model and real wastewaters were conducted to investigate the effect of metal salt (ferric and alum) addition in wastewater treatment and the corresponding phosphate removal from a design and operational perspective. Key factors expected to influence the phosphorus removal efficiency, such as pH, alkalinity, metal dose, metal type, initial and residual phosphate concentration, mixing, reaction time, age of flocs, and organic content of wastewater, were investigated. The lowest achievable concentration of orthophosphate under optimal conditions (0.01 to 0.05 mg/L) was similar for both aluminum and iron salts, with a broad optimum pH range of 5.0 to 7.0. Thus, in the typical operating range of wastewater treatment plants, pH is not a sensitive indicator of phosphorus removal efficiency. The most significant effect for engineering practice, apart from the metal dose, is that of mixing intensity and slow kinetic removal of phosphorus in contact with the chemical sludge formed. Experiments show that significant savings in chemical cost could be achieved by vigorously mixing the added chemical at the point of dosage and, if conditions allow, providing a longer contact time between the metal hydroxide flocs and the phosphate content of the wastewater. These conditions promoted the achievement of less than 0.1 mg/L residual orthophosphate content, even at lower metal-to-phosphorus molar ratios. These observations are consistent with the surface complexation model presented in a companion paper (Smith et al., 2008).  相似文献   
75.
The Blue Plains Advanced Wastewater Treatment Plant (Washington, D.C.) uses methanol as an external carbon source in a postdenitrification process, to achieve low effluent total nitrogen concentrations. This becomes more difficult in winter, at lower mixed liquor temperatures and higher flows, as a consequence of the kinetic behavior of the methanol-utilizing heterotrophs. The paper reports on an experimental batch test study conducted on Blue Plains postdenitrification sludge to investigate (1) the maximum specific growth rate of methanol-utilizing heterotrophs (Mu(METH)); (2) the temperature dependency of the growth rate; and (3) the efficacy of alternate substrates (ethanol, acetate, and sugar). A limited number of tests were conducted on sludge from two other treatment plants with methanol addition.  相似文献   
76.
In this research, the quality of drinking well waters from 14 districts around Seoul metropolitan city, Korea was assessed by measuring a number of parameters with established guideline (e.g., arsenic, fluoride, nitrate nitrogen, benzene, 1,2-dichloroethene, dichloromethane, copper, and lead) and without such criteria (e.g., hardness, chloride ion, sulfate ion, ammonia nitrogen, aluminum, iron, manganese, and zinc). Physical parameters such as evaporation residue (or total dissolved solids) and turbidity were also measured. The importance of each parameter in well waters was examined in terms of the magnitude and exceedance frequency of guideline values established by international (and national) health agencies. The results of this study indicate that among the eight parameters with well-established guidelines (e.g., WHO), arsenic and lead (guideline value of 0.01 mg?L?1 for both) recorded the highest exceedance frequency of 18 and 16 well samples ranging in 0.06–136 and 2–9 mg?L?1, respectively. As such, a number of water quality parameters measured from many well waters in this urban area were in critical levels which require immediate attention for treatment and continuous monitoring.  相似文献   
77.
Selected water quality parameters and spectroscopic characteristics of dissolved organic matter (DOM) were examined during two different seasons for an artificial coastal lake (Shiwha Lake in South Korea), which are affected by seawater exchange due to the operation of a tidal power plant and external organic loadings from the upstream catchments. The coastal lake exhibited much lower concentrations of organic matter and nutrients than the upstream sources. The spectroscopic properties of the lake DOM were easily distinguished from those of the catchment sources as revealed by a lower absorption coefficient, lower degree of humification, and higher spectral slopes. The observed DOM properties suggest that the lake DOM may be dominated by smaller molecular size and less condensed structures. For the lake and the upper streams, higher absorption coefficients and fluorescence peak intensities but lower spectral slopes and humification index were found for the premonsoon versus the monsoon season. However, such seasonal differences were less pronounced for the industrial channels in the upper catchments. Three distinctive fluorophore groups including microbial humic-like, tryptophan-like, and terrestrial humic-like fluorescence were decomposed from the fluorescence excitation-emission matrix (EEM) of the DOM samples by parallel factor analysis (PARAFAC) modeling. The microbial humic-like component was the most abundant for the industrial channels, suggesting that the component may be associated with anthropogenic organic pollution. The terrestrial humic-like component was predominant for the upper streams, and its relative abundance was higher for the rainy season. Our principal component analysis (PCA) results demonstrated that exchange of seawater and seasonally variable input of allochthonous DOM plays important roles in determining the characteristics of DOM in the lake.  相似文献   
78.
Neighborhood satisfaction,physical and perceived naturalness and openness   总被引:1,自引:0,他引:1  
This study examined neighborhood satisfaction in relation to naturalness and openness. It used Geographic Information System (GIS) and Landsat satellite imagery to physically measure the environmental attributes. Through path analysis it examined the relationship among the attributes, resident ratings of those environmental attributes, their satisfaction with them, and their overall neighborhood satisfaction (n = 725). We expected overall neighborhood satisfaction to relate to the resident's ratings of the environmental attributes and to the physical measures of them. The path model showed that overall neighborhood satisfaction was associated directly with the physical measure of building density and indirectly with the physical measure of vegetation rate through perception and evaluation of them. The perceptions and evaluations of the attributes related to one another. With refinements, GIS and Landsat data geo-related to survey data can offer a powerful tool for understanding the complex nature of neighborhood satisfaction and behavior.  相似文献   
79.
Hur J  Lee BM 《Chemosphere》2011,83(11):1603-1611
The heterogeneity of copper binding characteristics for dissolved organic matter (DOM) fractions was investigated based on the fluorescence quenching of the synchronous fluorescence spectra upon the addition of copper and two-dimensional correlation spectroscopy (2D-COS). Hydrophobic acid (HoA) and hydrophilic (Hi) fractions of two different DOM (algal and leaf litter DOM) were used for this study. For both DOM, fluorescence quenching occurred at a wider range of wavelengths for the HoA fractions compared to the Hi fractions. The combined information of the synchronous and asynchronous maps derived from 2D-COS provided a clear picture of the heterogeneous distribution of the copper binding sites within each DOM fraction, which was not readily recognized by a simple comparison of the changes in the synchronous fluorescence spectra upon the addition of copper. For the algal DOM, higher stability constants were exhibited for the HoA versus the Hi fractions. The logarithms of the stability constants ranged from 4.8 to 6.1 and from 4.5 to 5.0 for the HoA and the Hi fractions of the algal DOM, respectively, depending on the associated wavelength and the fitted models. In contrast, no distinctive difference in the binding characteristics was found between the two fractions of the leaf litter DOM. This suggests that influences of the structural and chemical properties of DOM on copper binding may differ for DOM from different sources. The relative difference of the calculated stability constants within the DOM fractions were consistent with the sequential orders interpreted from the asynchronous 2D-COS. It is expected that 2D-COS will be widely applied to other DOM studies requiring detailed information on the heterogeneous nature and subsequent effects under a range of environmental conditions.  相似文献   
80.
The Reedy River in South Carolina is affected by the urban area of Greenville, the third most populous city in the state, and by the effluents from two large-scale municipal wastewater treatment plants (WWTPs) located on the river. Riverine water chemistry was characterized using grab samples collected annually under spring season baseflow conditions. During the 4-year time period associated with this study, climatic variations included two severe drought spring seasons (2001 and 2002), one above-normal precipitation spring season (2003), and one below-normal precipitation spring season (2004). The influence of drought and human activities on the baseflow chemistry of the river was evaluated by comparing concentrations of dissolved anions, total metals, and other important water chemistry parameters for these different years. Concentrations of copper and zinc, common non-point source contaminants related to urban activities, were not substantially elevated in the river within the urban area under baseflow conditions when compared with headwater and tributary samples. In contrast, nitrate concentrations increased from 1.2–1.6 mg/l up to 2.6–2.9 mg/l through the urban stream reach. Concentrations of other major anions (e.g., sulfate, nitrate) also increased along the reach, suggesting that the river receives continuous inputs of these species from within the urban area. The highest concentrations of major cations and anions typically were observed immediately downstream from the two WWTP effluent discharge locations. Attenuation of nitrate downstream from the WWTPs did not always track chloride changes, suggesting that nitrate concentrations were being controlled by biochemical processes in addition to physical processes. The relative trends in decreasing nitrate concentrations with downstream distance appeared to depend on drought versus non-drought conditions, with biological processes presumably serving as a more important control during non-drought spring seasons.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号