首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3032篇
  免费   42篇
  国内免费   25篇
安全科学   163篇
废物处理   160篇
环保管理   613篇
综合类   334篇
基础理论   726篇
环境理论   5篇
污染及防治   762篇
评价与监测   212篇
社会与环境   106篇
灾害及防治   18篇
  2023年   21篇
  2022年   37篇
  2021年   26篇
  2020年   21篇
  2019年   31篇
  2018年   66篇
  2017年   67篇
  2016年   89篇
  2015年   58篇
  2014年   85篇
  2013年   283篇
  2012年   144篇
  2011年   179篇
  2010年   120篇
  2009年   122篇
  2008年   154篇
  2007年   188篇
  2006年   153篇
  2005年   106篇
  2004年   104篇
  2003年   118篇
  2002年   90篇
  2001年   68篇
  2000年   47篇
  1999年   51篇
  1998年   38篇
  1997年   43篇
  1996年   43篇
  1995年   40篇
  1994年   41篇
  1993年   34篇
  1992年   37篇
  1991年   26篇
  1990年   29篇
  1989年   19篇
  1988年   13篇
  1987年   20篇
  1986年   25篇
  1985年   17篇
  1984年   18篇
  1983年   28篇
  1982年   28篇
  1981年   25篇
  1980年   19篇
  1979年   16篇
  1977年   11篇
  1976年   9篇
  1975年   10篇
  1974年   11篇
  1971年   11篇
排序方式: 共有3099条查询结果,搜索用时 109 毫秒
461.
The ontogeny of behaviour relevant to dispersal was studied in situ with reared pelagic larvae of three warm temperate, marine, demersal fishes: Argyrosomus japonicus (Sciaenidae), Acanthopagrus australis and Pagrus auratus (both Sparidae). Larvae of 5–14 mm SL were released in the sea, and their swimming speed, depth and direction were observed by divers. Behaviour differed among species, and to some extent, among locations. Swimming speed increased linearly at 0.4–2.0 cm s−1 per mm size, depending on species. The sciaenid was slower than the sparids by 2–6 cm s−1 at any size, but uniquely, it swam faster in a sheltered bay than in the ocean. Mean speeds were 4–10 body lengths s−1. At settlement size, mean speed was 5–10 cm s−1, and the best performing individuals swam up to twice the mean speed. In situ swimming speed was linearly correlated (R 2=0.72) with a laboratory measure of swimming speed (critical speed): the slope of the relationship was 0.32, but due to a non-zero intercept, overall, in situ speed was 25% of critical speed. Ontogenetic vertical migrations of several metres were found in all three species: the sciaenid and one sparid descended, whereas the other sparid ascended to the surface. Overall, 74–84% of individual larvae swam in a non-random way, and the frequency of directional individuals did not change ontogenetically. Indications of ontogenetic change in orientated swimming (i.e. the direction of non-random swimming) were found in all three species, with orientated swimming having developed in the sparids by about 8 mm. One sparid swam W (towards shore) when <10 mm, and changed direction towards NE (parallel to shore) when >10 mm. These results are consistent with limited in situ observations of settlement-stage wild larvae of the two sparids. In situ, larvae of these three species have swimming, depth determination and orientation behaviour sufficiently well developed to substantially influence dispersal trajectories for most of their pelagic period.  相似文献   
462.
After a 40-year absence caused by pollution and eutrophication, burrowing mayflies (Hexagenia spp.) recolonized western Lake Erie in the mid 1990s as water quality improved. Mayflies are an important food resource for the economically valuable yellow perch fishery and are considered to be major indicator species of the ecological condition of the lake. Since their reappearance, however, mayfly populations have suffered occasional unexplained recruitment failures. In 2002, a failure of fall recruitment followed an unusually warm summer in which western Lake Erie became temporarily stratified, resulting in low dissolved oxygen levels near the lake floor. In the present study, we examined a possible link between Hexagenia recruitment and periods of intermittent stratification for the years 1997 2002. A simple model was developed using surface temperature, wind speed, and water column data from 2003 to predict stratification. The model was then used to detect episodes of stratification in past years for which water column data are unavailable. Low or undetectable mayfly recruitment occurred in 1997 and 2002, years in which there was frequent or extended stratification between June and September. Highest mayfly reproduction in 2000 corresponded to the fewest stratified periods. These results suggest that even relatively brief periods of stratification can result in loss of larval mayfly recruitment, probably through the effects of hypoxia. A trend toward increasing frequency of hot summers in the Great Lakes region could result in recurrent loss of mayfly larvae in western Lake Erie and other shallow areas in the Great Lakes.  相似文献   
463.
We show the implications of the commonly observed age-related decline in aboveground productivity of forests, and hence forest age structure, on the carbon dynamics of European forests in response to historical changes in environmental conditions. Size-dependent carbon allocation in trees to counteract increasing hydraulic resistance with tree height has been hypothesized to be responsible for this decline. Incorporated into a global terrestrial biosphere model (the Lund-Potsdam-Jena model, LPJ), this hypothesis improves the simulated increase in biomass with stand age. Application of the advanced model, including a generic representation of forest management in even-aged stands, for 77 European provinces shows that model-based estimates of biomass development with age compare favorably with inventory-based estimates for different tree species. Model estimates of biomass densities on province and country levels, and trends in growth increment along an annual mean temperature gradient are in broad agreement with inventory data. However, the level of agreement between modeled and inventory-based estimates varies markedly between countries and provinces. The model is able to reproduce the present-day age structure of forests and the ratio of biomass removals to increment on a European scale based on observed changes in climate, atmospheric CO2 concentration, forest area, and wood demand between 1948 and 2000. Vegetation in European forests is modeled to sequester carbon at a rate of 100 Tg C/yr, which corresponds well to forest inventory-based estimates.  相似文献   
464.
465.
466.
Extinction models based on diffusion theory generally fail to incorporate two important aspects of population biology—social structure and prey dynamics. We include these aspects in an individual-based extinction model for small, isolated populations of the gray wolf (Canis lupus). Our model predicts mean times to extinction significantly longer than those predicted by more general (diffusion) models. According to our model, an isolated population of 50 wolves has a 95% chance of surviving just 9 years and only a 30% chance of surviving beyond 100 years. Reflecting the influence of social structure, a wolf population initially comprising 50 individuals is expected to persist only a few years longer, on average (71 years), than is a population initially comprising just a single reproductive pair (62 years). In contrast, substantially greater average prey abundance leads to dramatically longer expected persistence times. Autocorrelated prey dynamics result in a more complex distribution of extinction times than predicted by many extinction models. We contend that demographic stochasticity may pose the greatest threat to small, isolated wolf populations, although environmental stochasticity and genetic effects may compound this threat. Our work highlights the importance of considering social structure and resource dynamics in the development of population viability analyses.  相似文献   
467.
468.
Summary Frogs(Rana pipiens) fed on blister beetles (Meloidae) or cantharidin, retain cantharidin systemically. After cessation of feeding, they void the compound relatively quickly. Systemic cantharidin does not protect frogs against ectoparasitic feeding by leeches(Hirudo medicinalis) or predation by snakes(Nerodia sipedon). As suggested by our data, and from reports in the early literature, ingestion of cantharidin-containing frogs can pose a health threat to humans.Paper no. 95 of the seriesDefense Mechanisms of Arthropods; no. 94 is LaMunyon & Eisner, Psyche (in press)  相似文献   
469.
Summary Summer generation 3rd, 4th and 5th instar nymphs plus adults of Gerris remigis were satiated for 2 days in a laboratory tray then deprived of food. Within 1/2–2 days, 19 of 27 nymphs and 10 of 30 adults began to exhibit territoriality, continued being so for 3–9 days, then ceased shortly before becoming quiescent. In the field, muscid flies fed to different territorial striders at a rate of 0, 1, 2, or 3 flies/day, resulted in 8 of 10 striders (at 2 flies/day) and 10 of 10 striders (at 3 flies/day) ceasing territoriality, whereas 5 of 8 controls (at 0 flies/day) remained territorial. Thus, lower and upper food thresholds were demonstrated, the upper threshold approached both from above (laboratory study) and below (field study).  相似文献   
470.
A swarm of honeybees provides a striking example of an animal group performing a synchronized departure for a new location; in this case, thousands of bees taking off at once to fly to a new home. However, the means by which this is achieved remain unclear. Shortly before takeoff, one hears a crescendo of a high-pitched mechanical signal—worker piping—so we explored the role of this signal in coordinating a swarm’s mass takeoff. Specifically, we examined whether exclusively nest site scouts produce the worker piping signal or whether it is produced in a relay or chain reaction fashion. We found no evidence that bees other than the scouts that have visited the swarm’s chosen nest site produce piping signals. This absence of relay communication in piping suggests that it is a signal that only primes swarms for takeoff and that the release of takeoff is triggered by some other signal or cue; perhaps the takeoff of bees on the swarm periphery as they reach flight temperature in response to piping.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号