首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18288篇
  免费   189篇
  国内免费   151篇
安全科学   520篇
废物处理   812篇
环保管理   2362篇
综合类   2851篇
基础理论   4933篇
环境理论   9篇
污染及防治   4717篇
评价与监测   1249篇
社会与环境   1065篇
灾害及防治   110篇
  2022年   159篇
  2021年   130篇
  2020年   119篇
  2019年   134篇
  2018年   256篇
  2017年   295篇
  2016年   407篇
  2015年   316篇
  2014年   530篇
  2013年   1460篇
  2012年   616篇
  2011年   861篇
  2010年   717篇
  2009年   689篇
  2008年   817篇
  2007年   878篇
  2006年   728篇
  2005年   611篇
  2004年   617篇
  2003年   611篇
  2002年   574篇
  2001年   708篇
  2000年   518篇
  1999年   297篇
  1998年   208篇
  1997年   244篇
  1996年   246篇
  1995年   273篇
  1994年   272篇
  1993年   210篇
  1992年   230篇
  1991年   205篇
  1990年   227篇
  1989年   205篇
  1988年   161篇
  1987年   179篇
  1986年   176篇
  1985年   171篇
  1984年   166篇
  1983年   166篇
  1982年   153篇
  1981年   144篇
  1980年   132篇
  1979年   139篇
  1978年   104篇
  1977年   121篇
  1975年   95篇
  1974年   96篇
  1973年   98篇
  1972年   90篇
排序方式: 共有10000条查询结果,搜索用时 203 毫秒
571.
The Canoparmelia texana epiphytic lichenized fungi was used to monitor atmospheric pollution in the S?o Paulo metropolitan region, SP, Brazil. The cluster analysis applied to the element concentration values confirmed the site groups of different levels of pollution due to industrial and vehicular emissions. In the distribution maps of element concentrations, higher concentrations of Ba and Mn were observed in the vicinity of industries and of a petrochemical complex. The highest concentration of Co found in lichens from the S?o Miguel Paulista site is due to the emissions from a metallurgical processing plant that produces this element. For Br and Zn, the highest concentrations could be associated both to vehicular and industrial emissions. Exploratory analyses revealed that the accumulation of toxic elements in C. texana may be of use in evaluating the human risk of cardiopulmonary mortality due to prolonged exposure to ambient levels of air pollution.  相似文献   
572.
It is widely recognized that wetlands, especially those rich in organic matter and receiving appreciable atmospheric mercury (Hg) inputs, are important sites of methylmercury (MeHg) production. Extensive wetlands in the southeastern United States have many ecosystem attributes ideal for promoting high MeHg production rates; however, relatively few mercury cycling studies have been conducted in these environments. We conducted a landscape scale study examining Hg cycling in coastal Louisiana (USA) including four field trips conducted between August 2003 and May 2005. Sites were chosen to represent different ecosystem types, including: a large shallow eutrophic estuarine lake (Lake Pontchartrain), three rivers draining into the lake, a cypress-tupelo dominated freshwater swamp, and six emergent marshes ranging from a freshwater marsh dominated by Panicum hemitomon to a Spartina alterniflora dominated salt marsh close to the Gulf of Mexico. We measured MeHg and total Hg (THg) concentrations, and ancillary chemical characteristics, in whole and filtered surface water, and filtered porewater. Overall, MeHg concentrations were greatest in surface water of freshwater wetlands and lowest in the profundal (non-vegetated) regions of the lake and river mainstems. Concentrations of THg and MeHg in filtered surface water were positively correlated with the highly reactive, aromatic (hydrophobic organic acid) fraction of dissolved organic carbon (DOC). These results suggest that DOC plays an important role in promoting the mobility, transport and bioavailability of inorganic Hg in these environments. Further, elevated porewater concentrations in marine and brackish wetlands suggest coastal wetlands along the Gulf Coast are key sites for MeHg production and may be a principal source of MeHg to foodwebs in the Gulf of Mexico. Examining the relationships among MeHg, THg, and DOC across these multiple landscape types is a first step in evaluating possible links between key zones for Hg(II)-methylation and the bioaccumulation of mercury in the biota inhabiting the Gulf of Mexico region.  相似文献   
573.
Bioavailability of mercury (Hg) to Selenastrum capricornutum was assessed in bioassays containing field-collected freshwater of varying dissolved organic carbon (DOC) concentrations. Bioconcentration factor (BCF) was measured using stable isotopes of methylmercury (MeHg) and inorganic Hg(II). BCFs for MeHg in low-DOC lake water were significantly larger than those in mixtures of lake water and high-DOC river water. The BCF for MeHg in rainwater (lowest DOC) was the largest of any treatment. Rainwater and lake water also had larger BCFs for Hg(II) than river water. Moreover, in freshwater collected from several US and Canadian field sites, BCFs for Hg(II) and MeHg were low when DOC concentrations were >5mg L(-1). These results suggest high concentrations of DOC inhibit bioavailability, while low concentrations may provide optimal conditions for algal uptake of Hg. However, variability of BCFs at low DOC indicates that DOC composition or other ligands may determine site-specific bioavailability of Hg.  相似文献   
574.
This paper examines the development of aerobic granular sludge in the presence of a synthetic chelating agent, nitrilotriacetic acid (NTA), in sequencing batch reactors (SBR). The growth of seed sludge at 0.26 mM, 0.52 mM and 1.05 mM of NTA was found to be significantly lower as compared to that in the absence of NTA. Aerobic granulation was significantly enhanced in the three SBRs (R2, R3 and R4), which were fed with 0.26 mM, 0.52 mM and 1.05 mM of NTA as a co-substrate, in comparison to the acetate-alone fed SBR (R1). After 2 months of operation, the mean diameter of the biomass stabilized at 0.35 mm in R1 (acetate alone), as compared to 2.18 mm in R4 (1.05 mM NTA+acetate). NTA degradation was established in SBRs, with almost complete removal during the SBR cycle. Batch experiments also showed efficient degradation of NTA by the aerobic granules.  相似文献   
575.
Sulphur cycling and its correlation to removal processes under dynamic redox conditions in the rhizosphere of helophytes in treatment wetlands are poorly understood. Therefore, long-term experiments were performed in laboratory-scale constructed wetlands treating artificial domestic wastewater in order to investigate the dynamics of sulphur compounds, the responses of plants and nitrifying microorganisms under carbon surplus conditions, and the generation of methane. For carbon surplus conditions (carbon:sulphate of 2.8:1) sulphate reduction happened but was repressed, in contrast to unplanted filters mentioned in literature. Doubling the carbon load caused stable and efficient sulphate reduction, rising of pH, increasing enrichment of S(2-) and S(0) in pore water, and finally plant death and inhibition of nitrification by sulphide toxicity. The data show a clear correlation of the occurrence of reduced S-species with decreasing C and N removal performance and plant viability in the experimental constructed wetlands.  相似文献   
576.
BACKGROUND, AIM, AND SCOPE: The presence of a variety of pollutants in the aquatic environment that can potentially interfere with the production of sex steroid hormones in wildlife and humans has been of increasing concern. The aim of the present study was to investigate the effects of extracts from Hong Kong marine waters, and influents and effluents from wastewater treatment plants on steroidogenesis using the H295R cell bioassay. After exposing H295R cells to extracts of water, the expression of four steroidogenic genes and the production of three steroid hormones were measured. MATERIALS AND METHODS: Water samples were collected during the summer of 2005 from 24 coastal marine areas and from the influents and effluents of two major waste water treatment plants (WWTPs) in Hong Kong, China. Samples were extracted by solid phase extraction (SPE). H295R cells were exposed for 48 h to dilutions of these extracts. Modulations of the expression of the steroidogenic genes CYP19, CYP17, 3betaHSD2, and CYP11beta2 were determined by measuring mRNA concentrations by real-time polymerase chain reaction (Q-RT-PCR). Production of the hormones progesterone (P), estradiol (E2), and testosterone (T) was quantified using enzyme linked immunosorbent assays (ELISA). RESULTS: Extracts from samples collected in two fish culture areas inhibited growth and proliferation of H295R cells at concentrations greater or equal to 10(5) L equivalents. The cells were exposed to the equivalent concentration of active substances in 10,000 L of water. Thus, to observe the same level of effect as observed in vitro on aquatic organisms would require a bioaccumulation factor of this same magnitude. None of the other 22 marine samples affected growth of the cells at any dilution tested. Twelve of the marine water samples completely inhibited the expression of CYP19 without affecting E2 production; inhibition of CYP17 expression was observed only in one of the samples while expression of CYP11beta2 was induced as much as five- and ninefold after exposure of cells to extracts from two locations. The expression of the progesterone gene 3betaHSD2 was not affected by any of the samples; only one sample induced approximately fourfold the production of E2. Although more than twofold inductions were observed for P and T production, none of these values were statistically significant to conclude effects on the production of these two hormones. While influents from WWTPs did not affect gene expression, an approximately 30% inhibition in the production of E2 and a 40% increase in P occurred for the exposure with influents from the Sha Tin and Stonecutters WWTPs, respectively. Effluents from WWTPs did not affect the production of any of the studied hormones, but a decrement in the expression of the aldosterone gene CYP11beta2 was observed for the Sha Tin WWTP exposure. No direct correlation could be established between gene expression and hormone production. DISCUSSION: Observed cytotoxicity in the two samples from fish culture areas suggest the presence of toxic compounds; chemical analysis is required for their full identification. Although effluents from WWTPs did not affect hormone production, other types of endocrine activity such as receptor-mediated effects cannot be ruled out. Interactions due to the complexity of the samples and alternative steroidogenic pathways might explain the lack of correlation between gene expression and hormone production results. CONCLUSIONS: Changes observed in gene expression and hormone production suggest the presence in Hong Kong coastal waters of pollutants with endocrine disruption potential and others of significant toxic effects. The aromatase and aldosterone genes seem to be the most affected by the exposures, while E2 and P are the hormones with more significant changes observed. Results also suggest effectiveness in the removing of compounds with endocrine activity by the WWTPs studied, as effluent samples did not significantly affect hormone production. The H295R cell showed to be a valuable toll in the battery required for the analysis of endocrine disrupting activities of complex environmental samples. RECOMMENDATIONS AND PERSPECTIVES: Due to the intrinsic complexity of environmental samples, a combination of analytical tools is required to realistically assess environmental conditions, especially in aquatic systems. In the evaluation of endocrine disrupting activities, the H295R cell bioassay should be used in combination with other genomic, biological, chemical, and hydrological tests to establish viable modes for endocrine disruption and identify compounds responsible for the observed effects.  相似文献   
577.
BACKGROUND, AIM, AND SCOPE: Gene expression analyses with real-time (RT)-polymerase chain reaction (PCR) gains importance in marine monitoring. This new technique has to be compared to the classical approaches like the well known biomarker ethoxyresorufin-O-deethylase (EROD) to test their suitability for monitoring programmes. The goal of the present study is to compare EROD activity and CYP1A1 mRNA expression in the important monitoring fish species dab (Limanda limanda) and to answer the question of whether these parameters reflect the polycyclic aromatic hydrocarbon (PAH) contamination of the fish. Further on, glyceraldehyd-3-phosphate dehydrogenase (GAPDH) was investigated as a potential housekeeping gene. MATERIALS AND METHODS: Female dab were caught in the summer of 2004 in the North Sea and in the Baltic. EROD activity was determined in liver samples by a kinetic fluorimetric assay according to a standard protocol. The gene expression of CYP1A (cytochrome P450 1A) and GAPDH were determined by means of RT-PCR. Results were compared to gonado somatic index and to the concentration of PAH metabolite 1OHPyr (1-hydroxypyrene) analysed in the bile fluids of the fish, respectively. RESULTS: Dab from all stations showed a considerable individual variation in the levels of both CYP1A mRNA and EROD. Highest mean values for CYP1A mRNA and EROD were detected in the northern part of the sampling area. In contrast, the PAH metabolite 1OHPyr was found at the highest concentration in fish caught near the German coast. CYP1A mRNA and EROD showed only a minor but significant correlation (r = 0.32, p < 0.05, n = 123). 1OHPyr in bile correlated significantly (p < 0.05) with the amount of GAPDH mRNA content in the liver. DISCUSSION: The significant but low correlation of CYP1A mRNA and EROD activity on an individual basis illustrates that these two parameters are apparently not closely linked. However, maximum EROD values correspond with maximum CYP1A mRNA concentrations when station means are regarded. Because EROD and CYP1A mRNA in dab follow different physiological principles, their application will lead to related but not identical monitoring results. This should be taken into account when future marine monitoring programmes are designed. The results also indicate that PAH are not the crucial factor for CYP1A and EROD levels in dab from the off-shore areas in the North Sea. This is remarkable because the PAH metabolism is known to be CYP1A-dependent and the widely used biomarker EROD has been recommended for monitoring PAH-related effects in fish from the North Sea. Due to a correlation between GAPDH and 1OHPyr, GAPDH was not suitable as housekeeping gene for dab. CONCLUSIONS: Neither the results from EROD nor from CYP1A1 mRNA measurements in dab reflected their exposure to PAH as measured by the PAH metabolite 1OHPyr. Thus, the question arises of whether EROD or CYP1A mRNA is a suitable biomarker at all to indicate PAH exposure in dab from the open North Sea. RECOMMENDATIONS AND PERSPECTIVES: For future biological effect monitoring, it is advisable to measure more and predominately independent parameters by RT-PCR and to incorporate more components of the detoxification system.  相似文献   
578.
Forty-six bacterial cultures, including one culture collection strain, thirty from the rhizosphere of Alyssum murale and fifteen from Ni-rich soil, were tested for their ability to tolerate arsenate, cadmium, chromium, zinc, mercury, lead, cobalt, copper, and nickel in their growth medium. The resistance patterns, expressed as minimum inhibitory concentrations, for all cultures to the nine different metal ions were surveyed by using the agar dilution method. A large number of the cultures were resistant to Ni (100%), Pb (100%), Zn (100%), Cu (98%), and Co (93%). However, 82, 71, 58 and 47% were sensitive to As, Hg, Cd and Cr(VI), respectively. All cultures had multiple metal-resistant, with heptametal resistance as the major pattern (28.8%). Five of the cultures (about of 11.2% of the total), specifically Arthrobacter rhombi AY509239, Clavibacter xyli AY509235, Microbacterium arabinogalactanolyticum AY509226, Rhizobium mongolense AY509209 and Variovorax paradoxus AY512828 were tolerant to nine different metals. The polymerase chain reaction in combination with DNA sequence analysis was used to investigate the genetic mechanism responsible for the metal resistance in some of these gram-positive and gram-negative bacteria that were, highly resistant to Hg, Zn, Cr and Ni. The czc, chr, ncc and mer genes that are responsible for resistance to Zn, Cr, Ni and Hg, respectively, were shown to be present in these bacteria by using PCR. In the case of, M. arabinogalactanolyticum AY509226 these genes were shown to have high homology to the czcD, chrB, nccA, and mer genes of Ralstonia metallidurans CH34. Therefore, Hg, Zn, Cr and Ni resistance genes are widely distributed in both gram-positive and gram-negative isolates obtained from A. murale rhizosphere and Ni-rich soils.  相似文献   
579.
The sonochemical degradation of the systematically substituted azo compound 2,7-dihydroxy-1-phenylazonaphthaline-3,6-disulfonic acid was investigated using a frequency of 850 kHz and an acoustic input power of 61 W. All derivatives were degraded completely within 6h by the ultrasonic treatment. Trifluoromethyl substituted azo compounds exhibited 2-3-fold higher degradation rates in comparison to the reference hydrogen substituted azo compound (k=0.54 h(-1)). In contrast to enzymatic processes (azoreductase or laccase), the ultrasonic treatment for these ortho-, meta-, and para-substituted azo compound showed 1.5-50-fold higher degradation rates. Additionally the ultrasound treatment was characterized by shorter reaction times. As a result of the detection and identification of specific intermediates using LC-MS a reaction pathway of the sonochemical degradation of the analysed azo compound is proposed indicating the formation of cyclohexadienone and naphthalene quinone derivatives.  相似文献   
580.
Strontium-90 has migrated deep into the unsaturated subsurface beneath leaking storage tanks in the Waste Management Areas (WMA) at the U.S. Department of Energy's (DOE) Hanford Reservation. Faster than expected transport of contaminants in the vadose zone is typically attributed to either physical hydrologic processes such as development of preferential flow pathways, or to geochemical processes such as the formation of stable, anionic complexes with organic chelates, e.g., ethylenediaminetetraacetic acid (EDTA). The goal of this paper is to determine whether hydrological processes in the Hanford sediments can influence the geochemistry of the system and hence control transport of Sr(2+) and SrEDTA(2-). The study used batch isotherms, saturated packed column experiments, and an unsaturated transport experiment in an undisturbed core. Isotherms and repacked column experiments suggested that the SrEDTA(2-) complex was unstable in the presence of Hanford sediments, resulting in dissociation and transport of Sr(2+) as a divalent cation. A decrease in sorption with increasing solid:solution ratio for Sr(2+) and SrEDTA(2-) suggested mineral dissolution resulted in competition for sorption sites and the formation of stable aqueous complexes. This was confirmed by detection of MgEDTA(2-), MnEDTA(2-), PbEDTA(2-), and unidentified Sr and Ca complexes. Displacement of Sr(2+) through a partially-saturated undisturbed core resulted in less retardation and more irreversible sorption than was observed in the saturated repacked columns, and model results suggested a significant reservoir (49%) of immobile water was present during transport through the heterogeneous layered sediments. The undisturbed core was subsequently disassembled along distinct bedding planes and subjected to sequential extractions. Strontium was unequally distributed between carbonates (49%), ion exchange sites (37%), and the oxide (14%) fraction. An inverse relationship between mass wetness and Sr suggested that sandy sediments of low water content constituted the immobile flow regime. Our results suggested that the sequestration of Sr(2+) in partially-saturated, heterogeneous sediments was most likely due to the formation of immobile water in drier regions having low hydraulic conductivities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号