首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18288篇
  免费   189篇
  国内免费   151篇
安全科学   520篇
废物处理   812篇
环保管理   2362篇
综合类   2851篇
基础理论   4933篇
环境理论   9篇
污染及防治   4717篇
评价与监测   1249篇
社会与环境   1065篇
灾害及防治   110篇
  2022年   159篇
  2021年   130篇
  2020年   119篇
  2019年   134篇
  2018年   256篇
  2017年   295篇
  2016年   407篇
  2015年   316篇
  2014年   530篇
  2013年   1460篇
  2012年   616篇
  2011年   861篇
  2010年   717篇
  2009年   689篇
  2008年   817篇
  2007年   878篇
  2006年   728篇
  2005年   611篇
  2004年   617篇
  2003年   611篇
  2002年   574篇
  2001年   708篇
  2000年   518篇
  1999年   297篇
  1998年   208篇
  1997年   244篇
  1996年   246篇
  1995年   273篇
  1994年   272篇
  1993年   210篇
  1992年   230篇
  1991年   205篇
  1990年   227篇
  1989年   205篇
  1988年   161篇
  1987年   179篇
  1986年   176篇
  1985年   171篇
  1984年   166篇
  1983年   166篇
  1982年   153篇
  1981年   144篇
  1980年   132篇
  1979年   139篇
  1978年   104篇
  1977年   121篇
  1975年   95篇
  1974年   96篇
  1973年   98篇
  1972年   90篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
701.
Carbon sequestration in soils might mitigate the increase of carbon dioxide (CO2) in the atmosphere. Two contrasting subtropical perennial forage species, bahiagrass (BG; Paspalum notatum Flügge; C4), and rhizoma perennial peanut (PP; Arachis glabrata Benth.; C3 legume), were grown at Gainesville, Florida, in field soil plots in four temperature zones of four temperature-gradient greenhouses, two each at CO2 concentrations of 360 and 700 micromol mol(-1). The site had been cultivated with annual crops for more than 20 yr. Herbage was harvested three to four times each year. Soil samples from the top 20 cm were collected in February 1995, before plant establishment, and in December 2000 at the end of the project. Overall mean soil organic carbon (SOC) gains across 6 yr were 1.396 and 0.746 g kg(-1) in BG and PP, respectively, indicating that BG plots accumulated more SOC than PP. Mean SOC gains in BG plots at 700 and 360 micromol mol(-1) CO2 were 1.450 and 1.343 g kg(-1), respectively (not statistically different). Mean SOC gains in PP plots at 700 and 360 micromol mol(-1) CO2 were 0.949 and 0.544 g kg(-1), respectively, an increase caused by elevated CO2. Relative SON accumulations were similar to SOC increases. Overall mean annual SOC accumulation, pooled for forages and CO2 treatments, was 540 kg ha(-1) yr(-1). Eliminating elevated CO2 effects, overall mean SOC accumulation was 475 kg ha(-1) yr(-1). Conversion from cropland to forages was a greater factor in SOC accumulation than the CO2 fertilization effect.  相似文献   
702.
Manure water-extractable phosphorus (WEP) data are used in indices and models to assess P transport in runoff. Methods to measure WEP vary widely, often without understanding the effect on how much P is extracted. We conducted water extractions on five dairy, swine, and poultry manures to assess single and sequential extractions, drying manures, solution to solid (cm3 g(-1)) extraction ratios, and P determination method. We found little difference in WEP of single or sequential extractions. Increasing extraction ratio from 10:1 to 250:1 resulted in more WEP recovered, but in a diminishing fashion so that ratios of 200:1 and 250:1 were not significantly different. Patterns of increased WEP with extraction ratio varied with manure type, presence of bedding material, and drying treatment. Fresh and air-dried manures had similar patterns, but differed substantially from oven-dried (90 degrees C) manures. The differential effect of oven-drying on WEP was greatest for dairy and poultry manure, and less for swine manure. We analyzed water extracts colorimetrically before and after digestion, to examine the potential effect of P determination by inductively coupled plasma (ICP) spectroscopy. Digested extracts always contained more P. For manures with bedding, drying decreased the difference in P measured before and after digestion. The opposite was true for manures without bedding. Results highlight the influence of methodology on manure WEP measurement and caution needed when comparing data across studies using different WEP methods. Overall, our results point to a need for a standard manure water extraction method.  相似文献   
703.
Field experiments were conducted to optimize the phytoextraction of weathered p,p'-DDE (p,p'-dichlorodiphenyldichloroethylene) by Cucurbita subspecies. The effects of two soil amendments, mycorrhizae or a biosurfactant, on p,p'-DDE accumulation was determined. Also, p,p'-DDE uptake was assessed during plant growth (12, 26, 38, and 62 d), and cultivars that accumulate weathered p,p'-DDE were intercropped with cultivars known not to have that ability. Cucurbita pepo L. ssp. pepo accumulated large amounts of the contaminant, having stem bioconcentration factors, amounts of p,p'-DDE translocated, and contaminant phytoextraction that were 14, 9.9, and 5.0 times greater than C. pepo L. ssp. ovifera (L.) D.S. Decker, respectively. During 62 d, the stem BCF (bioconcentration factor) for p,p'-DDE in subspecies pepo remained constant and the total amount of contaminant accumulated was correlated with plant biomass (r(2) = 0.86). For subspecies ovifera, the stem BCF was highest at 12 d (1.5) but decreased to 0.39 by 62 d, and p,p'-DDE removal was not correlated with plant biomass. Mycorrhizal inoculation increased p,p'-DDE accumulation by both subspecies by an average 4.4 times. For subspecies pepo, mycorrhizae increased the percentage of contaminant extracted from 0.72 to 2.1%. Biosurfactant amendment also enhanced contaminant accumulation by both subspecies, although treatment reduced subspecies ovifera biomass by 60%. The biosurfactant had no effect on the biomass of subspecies pepo, increased the average contaminant concentration by 3.6-fold, and doubled the overall amount of p,p'-DDE removed from the soil. Soil amendments that enhance the mobility of weathered persistent organic pollutants will significantly increase the amount of contaminant phytoextraction by Cucurbita pepo.  相似文献   
704.
The effect of mechanically aerating grassland before liquid manure application in the fall on surface runoff and transport of nutrients and solids was studied in a high rainfall area. The two treatments were control and aeration, the latter receiving one pass with an aerator perpendicular to the slope before fall application of liquid manure (dairy in Years 1-3 and swine in Year 4). Treatments were randomly assigned on 3 to 5% sloping land with a silt loam surface soil (Aquic Dystroxerept) planted in orchardgrass (Dactylis glomerata L.). Runoff from natural rainfall events was sampled for nutrient and solids analysis. Aeration significantly reduced runoff and loads of suspended solids, total Kjeldahl N (TKN), and dissolved reactive P in all years. Annual runoff amounts were reduced by 47 to 81%, suspended and volatile solid loads by 48 to 69% and 42 to 83%, respectively, TKN loads by 56 to 81%, and total P (TP) loads by 25 to 75%. Loads of the soluble nutrient NH4-N, dissolved reactive P, and K were reduced by 41 to 83%. The first three runoff events after manure application accounted for approximately one-third of the annual total runoff and solid and nutrient loads when averaged across treatments, with loads of TKN, K, and NH4-N totaling 4.4, 3.3, and 1.9 kg ha-1, respectively. Aeration slightly increased downward movement of NO3-N, but not other nutrients in the soil. Thus mechanical aeration can be an effective tool for reducing runoff and loads of solids and nutrients after surface application of liquid manure on sloping grassland.  相似文献   
705.
Tillage and field scale controls on greenhouse gas emissions   总被引:3,自引:0,他引:3  
There is a lack of understanding of how associations among soil properties and management-induced changes control the variability of greenhouse gas (GHG) emissions from soil. We performed a laboratory investigation to quantify relationships between GHG emissions and soil indicators in an irrigated agricultural field under standard tillage (ST) and a field recently converted (2 yr) to no-tillage (NT). Soil cores (15-cm depth) were incubated at 25 degrees C at field moisture content and 75% water holding capacity. Principal component analysis (PCA) identified that most of the variation of the measured soil properties was related to differences in soil C and N and soil water conditions under ST, but soil texture and bulk density under NT. This trend became more apparent after irrigation. However, principal component regression (PCR) suggested that soil physical properties or total C and N were less important in controlling GHG emissions across tillage systems. The CO2 flux was more strongly determined by microbial biomass under ST and inorganic N content under NT than soil physical properties. Similarly, N2O and CH4 fluxes were predominantly controlled by NO3- content and labile C and N availability in both ST and NT soils at field moisture content, and NH4+ content after irrigation. Our study indicates that the field-scale variability of GHG emissions is controlled primarily by biochemical parameters rather than physical parameters. Differences in the availability and type of C and N sources for microbial activity as affected by tillage and irrigation develop different levels and combinations of field-scale controls on GHG emissions.  相似文献   
706.
Electroosmotic dewatering of dredged sediments: bench-scale investigation   总被引:1,自引:0,他引:1  
The Indiana Harbor (Indiana, USA) has not been dredged since 1972 due to lack of a suitable disposal site for dredged sediment. As a result of this, over a million cubic yards of highly contaminated sediment has accumulated in the harbor. Recently, the United States Army Corps of Engineers (USACE) has selected a site for the confined disposal facility (CDF) and is in the process of designing it. Although dredging can be accomplished rapidly, the disposal in the CDF has to be done slowly to allow adequate time for consolidation to occur. The sediment possesses very high moisture content and very low hydraulic conductivity, which cause consolidation to occur slowly. Consolidation of the sediment is essential in order to achieve adequate shear strength of sediments and also to provide enough air space to accommodate the large amount of sediment that requires disposal. Currently, it has been estimated that if a one 3-foot (0.9-m) thick layer of sediment was disposed of at the CDF annually, it would take approximately 10 years to dispose of all the sediment that is to be dredged from the Indiana Harbor. This study investigated the feasibility of using an electroosmotic dewatering technology to accelerate dewatering and consolidation of sediment, thereby allowing more rapid disposal of sediment into the CDF. Electroosmotic dewatering essentially involves applying a small electric potential across the sediment layer, thereby inducing rapid flow as a result of physico-chemical and electrochemical processes. A series of bench-scale electrokinetic experiments were conducted on actual dredged sediment samples from the Indiana Harbor to investigate dewatering rates caused by gravity alone, dewatering rates caused by gravity and electric potential, and the effects of the addition of polymer flocculants on dewatering of the sediments. The results showed that electroosmotic dewatering under an applied electric potential of 1.0VDC/cm could increase the rate of dewatering and consolidation by an order of magnitude as compared to gravity drainage alone. Amending the sediment with polymers at low concentrations (0.5-1% by dry weight) will enhance this dewatering process; however, the optimal polymer concentration and the cost-effectiveness of using polymers should be investigated further.  相似文献   
707.
Soil physicochemical characteristics, total aboveground biomass, number of species and relative abundance of groups and individual species were measured along a moisture gradient in a pasture, flooded in part during winter through early summer, adjacent to Pamvotis lake in Ioannina, Greece. Soil and vegetation measurements were conducted in 39 quadrats arranged in four zones perpendicular to the moisture gradient. The zone closest to the lake, recently separated from the lake, became part of the pasture and its soil texture was quite different from that of the other zones with a substrate containing 91% sand. Except for pH, this zone had the lowest values in the other five soil physicochemical characteristics measured (organic matter, total and extracted inorganic nitrogen, Olsen extracted phosphorus and extractable potassium); in the other zones organic matter, total nitrogen, phosphorus and potassium tended to increase from the driest to the wettest zone. Total aboveground biomass, ranging from 280 to 840 gm-2, is high for herbaceous pastures in the conditions of Mediterranean climate and it was not related to distance from the lake's shoreline, although the highest values were measured at intermediate distances, or to any of the various soil characteristics measured. Also, the number of species/0.25 m2 was not related to any of the various soil characteristics, but it was highest at the intermediate distances from the lake's shoreline. Species composition varied along the moisture gradient. Forbs as well as annual grasses and legumes declined in abundance from the driest to the wettest places; the reverse was the case for sedges and perennial grasses and legumes. These results indicate that the soil moisture gradient was the principal factor affecting soil characteristics and plant species composition. Since most species were recorded in all the four zones of the pasture, indicating that these can tolerate all variations in abiotic conditions of pasture, the vegetation zonation seems to be influenced by competition. Each functional group of species tends to dominate in a particular range of the soil moisture gradient where it is better suited and tends to exclude competitively other species. Management practices (mowing and grazing) affect the kinds of processes which maintain the observed community structure either by preventing the establishment of later successional species, like reeds and woody species, or by moderating the shoot competition, especially in the wetter zones, and thus permitting the creeping species to grow successfully.  相似文献   
708.
The geographical limitations of Singapore, its restricted natural resources and voluminous municipal and industrial waste streams, make environmental management a major challenge for the island state. In an attempt to find ways to reduce importation of raw materials and the waste sent to landfill, light weight aggregates were produced from marine clay and a CaF(2)-rich semiconductor industry sludge. Aggregates were produced in a bench-scale rotary kiln with three clay/sludge loadings (90/10, 70/30 and 50/50%). All three mixtures showed good bloating behavior during firing and the ceramic pellets (1-1.5cm diameter) had densities well below that required for light-weight aggregates. In the initial tests, the pore sizes of the aggregates were in general too large resulting in high water absorption. Comparisons between the composition of the two waste products and the aggregates showed a significant loss of fluorine (40-60%) during processing; a problem which may require flue gas treatment. Leach testing showed that the formed aggregates would not pose a human or environmental hazard in terms of fluorine mobilization.  相似文献   
709.
This paper studies the scavenging efficiencies of aerosol emissions from coal-fired power plants under different removal mechanisms (coagulation, heterogeneous nucleation and gravitational settling) as a function of time. It also analyses the ‘health impact’ of the aerosol before and after the above dynamic mechanisms by comparing the respirable dust fractions. The well-known equations of evolution are applied to an average PSD that represents the exhaust particulate emissions from coal-fired power plants (i.e. Aboño power plant in Asturias that belongs to Hidrocantábrico Group, S.A.). From this study it is inferred that respirable dust is scavenged with the greatest difficulty and when compared with the initial volume of respirable dust, roughly 20% remains after 18 h of gravitational settling. Therefore, gravitational settling is the main removal mechanism of respirable dust compared to condensation and coagulation.  相似文献   
710.
Integrated Risk Framework for Onsite Wastewater Treatment Systems   总被引:1,自引:0,他引:1  
Onsite wastewater treatment systems (OWTS) are becoming increasingly important for the treatment and dispersal of effluent in new urbanised developments that are not serviced by centralised wastewater collection and treatment systems. However, the current standards and guidelines adopted by many local authorities for assessing suitable site and soil conditions for OWTS are increasingly coming under scrutiny due to the public health and environmental impacts caused by poorly performing systems, in particular septic tank-soil adsorption systems. In order to achieve sustainable onsite wastewater treatment with minimal impacts on the environment and public health, more appropriate means of assessment are required. This paper highlights an integrated risk based approach for assessing the inherent hazards associated with OWTS in order to manage and mitigate the environmental and public health risks inherent with onsite wastewater treatment. In developing a sound and cohesive integrated risk framework for OWTS, several key issues must be recognised. These include the inclusion of relevant stakeholders throughout framework development, the integration of scientific knowledge, data and analysis with risk assessment and management ideals, and identification of the appropriate performance goals for successful management and mitigation of associated risks. These issues were addressed in the development of the risk framework to provide a generic approach to assessing risk from OWTS. The utilisation of the developed risk framework for achieving more appropriate assessment and management techniques for OWTS is presented in a case study for the Gold Coast region, Queensland State, Australia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号