Poultry litter generated on the Delmarva Peninsula is from phytase-modified bird diet and bisulfate amendment. To establish agronomic application rates in conservation tillage systems, bisulfate-amended phytase-diet poultry litter was investigated for its nutrient release kinetics and supply capacity under simulated weathering conditions. Delmarva poultry litter was packed in PVC columns (15 cm i.d. × 25 cm height) to a depth of 5 cm and leached intermittently with 600 mm of water for 190 days. Concentrations of various nutrients in leachate were analyzed and nutrient release kinetics were modelled. Poultry litter leachate contained high contents of dissolved organic carbon (DOC, 35–11,800 mg L?1), nitrogen (N 6–2690 mg L?1), phosphorus (P 45–225 mg L?1), potassium (K 20–6060 mg L?1), and other nutrients. Release of the nutrients occurred primarily in the starting 5 weeks and mostly followed a first order Exponential-Rise-to-Maximum model. Under the specified conditions, the poultry litter demonstrated a nutrient supply capacity of 11.7 kg N Mg?1, 5.4 kg P Mg?1, and 36.8 kg K Mg?1. Release of the potentially plant-available N and K was nearly finalized within 190 days of leaching/weathering, but it would require two years for full release of the leachable P. The results indicate that with consideration of field conditions, surface application of bisulfate-amended phytase-diet Delmarva poultry litter at recommended 6.6 Mg ha?1 to conservation tillage systems would largely provide P 25.0 kg ha?1, N 106.6 kg ha?1, and K 245.5 kg ha?1 to seasonal crops. 相似文献
Recycled poly(ethylene terephthalate) (R-PET) was blended with 15–30 wt% of styrene–ethylene/butylenes–styrene (SEBS) block
copolymer and maleic anhydride grafted SEBS (SEBS-g-MA). Effects of nucleation and toughening of the elastomers were evaluated
systematically by study of morphology, crystallization, thermal and mechanical properties of the blend. The addition of 30 wt%
SEBS promoted the formation of co-continuous structure of the blend and caused the fracture mechanism to change from strain
softening to strain hardening. Addition of SEBS-g-MA resulted in significant modification of phase morphology and obviously
improved the impact strength. The compatibilization reaction of PET with SEBS-g-MA accelerated the crystallization of PET
and increased the crystallinity. The shifts in glass transition temperature of PET towards that of SEBS-g-MA and the higher
modulus for R-PET/SEBS-g-MA (70/30) blend found by DMA are also indications of better interactions under the conditions of
compatibilization and interpenetrating structure. 相似文献
The
spatial pattern of ecosystem function can affect ecosystem conservation. Ecosystem functions are often heterogeneous spatially due to physical and biological factors. We can influence ecosystem functions by changing the spatial patterns of the physical and biological elements of an ecosystem and regulating their combinations. The variation–position effect highlights a phenomenon resulting from the spatial pattern of ecosystem function. The effect shows that the identical variation of a factor may produce different effects on the overall situation when this variation occurs in a different spatial position. In a watershed of the Yangtze River, water retention is a primary ecosystem function. The variation–position effect for water retention capacity occurs in the watershed because of the spatial heterogeneity in vegetation, soil, and slope. The change of vegetation that occurs in a complex can affect the overall situation of water retention, and the effect can be different due to the change occurring in the
position holding different vegetation-soil-slope complex. To improve the ecosystem in the watershed and to meet the social needs for the ecosystem function of water retention, a strategy called ecosystem function and spatial pattern-based forest extension was proposed to conserve forests. The implementation of the strategy enables the watershed to attain the maximum effective increase in water retention capacity. 相似文献
In this study, a hybrid two-stage fuzzy-stochastic robust programming (TFSRP) model is developed and applied to the planning of an air-quality management system. As an extension of existing fuzzy-robust programming and two-stage stochastic programming methods, the TFSRP can explicitly address complexities and uncertainties of the study system without unrealistic simplifications. Uncertain parameters can be expressed as probability density and/or fuzzy membership functions, such that robustness of the optimization efforts can be enhanced. Moreover, economic penalties as corrective measures against any infeasibilities arising from the uncertainties are taken into account. This method can, thus, provide a linkage to predefined policies determined by authorities that have to be respected when a modeling effort is undertaken. In its solution algorithm, the fuzzy decision space can be delimited through specification of the uncertainties using dimensional enlargement of the original fuzzy constraints. The developed model is applied to a case study of regional air quality management. The results indicate that reasonable solutions have been obtained. The solutions can be used for further generating pollution-mitigation alternatives with minimized system costs and for providing a more solid support for sound environmental decisions. 相似文献
Objective: The objective of this study was to explore the evolution footprints of simulated driving research in the past 20 years through rigorous and systematic bibliometric analysis, to provide insights regarding when and where the research was performed and by whom and how the mainstream content evolved over the years.
Methods: The analysis began with data retrieval in Web of Science with defined search terms related to simulated driving. BibExcel and CiteSpace were employed to conduct the performance analysis and co-citation network analysis; that is, probe of the performance of institutes, journals, authors, and research hotspots.
Results: A total of 3,766 documents were filtered out and presented an exponential growth from 1997 to 2016. The United States contributed the most publications as well as international collaborations followed by Germany and China. In addition, several universities in The Netherlands and the United States dominated the list of contributing institutes. The leading journals were in transportation and ergonomics. The leading researchers were also recognized among the 8,721 contributing authors, such as J. D. Lee, D. L. Fisher, J. H. Kim, and K. A. Brookhuis. Finally, the co-citation analysis illuminated the evolution of simulated driving research that covered the following topics roughly in chronological order: task-induced stress, drivers with neurological disorders, alertness and sleepiness while driving, trust toward driving assistance systems, driver distraction, the effect of drug use, the validity of simulators, and automated driving.
Conclusions: This article employed bibliometric tools to probe the contributing countries, institutes, journals, authors, and mainstream hotspots of simulated driving research in the past 20 years. A systematic bibliometric analysis of this field will help researchers realize the panorama of global simulated driving and establish future research directions. 相似文献