首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   695篇
  免费   20篇
  国内免费   2篇
安全科学   25篇
废物处理   28篇
环保管理   180篇
综合类   98篇
基础理论   185篇
环境理论   2篇
污染及防治   133篇
评价与监测   35篇
社会与环境   20篇
灾害及防治   11篇
  2023年   10篇
  2022年   9篇
  2021年   8篇
  2020年   7篇
  2019年   13篇
  2018年   12篇
  2017年   18篇
  2016年   26篇
  2015年   17篇
  2014年   21篇
  2013年   60篇
  2012年   29篇
  2011年   37篇
  2010年   20篇
  2009年   31篇
  2008年   40篇
  2007年   36篇
  2006年   27篇
  2005年   27篇
  2004年   34篇
  2003年   20篇
  2002年   26篇
  2001年   18篇
  2000年   15篇
  1999年   6篇
  1998年   12篇
  1997年   10篇
  1996年   10篇
  1995年   7篇
  1994年   11篇
  1993年   11篇
  1992年   11篇
  1991年   4篇
  1990年   11篇
  1989年   8篇
  1988年   3篇
  1987年   9篇
  1986年   2篇
  1985年   3篇
  1984年   6篇
  1982年   7篇
  1981年   5篇
  1980年   2篇
  1979年   3篇
  1978年   2篇
  1972年   3篇
  1971年   2篇
  1968年   2篇
  1959年   1篇
  1929年   1篇
排序方式: 共有717条查询结果,搜索用时 0 毫秒
681.
Abstract: It is common practice in the United States and elsewhere to maintain vegetated filter strips adjacent to streams to retain contaminants in surface runoff. Most research has evaluated contaminant retention in managed agricultural field strips, while relatively few studies have quantified retention in forested filter strips, particularly for dissolved contaminants. Plot‐scale overland flow experiments were conducted to evaluate the efficiency of natural forested filter strips established as streamside management zones (SMZs) for retaining phosphorus (P), atrazine, and picloram transported in runoff. Retention was evaluated for five different slope classes: 1‐2, 5‐7, 10‐12, 15‐17, and 20‐22%; two cover conditions: undisturbed forest floor (O horizon intact) and forest floor removed by raking; and two periods with contrasting soil moisture conditions: summer‐dry and winter‐wet season. Surface flow was collected at 0, 2, 4, 6, and 10 m within the filter strip to evaluate changes in solution concentration as it moved through the O horizon and the surface soil horizon mixing zone. On average, a 10 m length of forested SMZ with an undisturbed forest floor reduced initial solution concentration of total dissolved P by 51%, orthophosphate P by 49%, atrazine by 28%, and picloram by 5%. Percentages of mass retention through infiltration of water plus concentration reductions in runoff were 64% for total dissolved P, 62% for orthophosphate P, 47% for atrazine, and 28% for picloram for undisturbed forest floor conditions. Lower retention occurred following forest floor removal, particularly for P. Average dissolved P retention was 16% lower following forest floor removal. For undisturbed sites, differences in retention were more closely related to forest floor depth than to slope or antecedent soil moisture. These results indicate that forested SMZ filter strips provide a significant measure of surface water protection from dissolved P and herbicide delivery to surface water.  相似文献   
682.
683.
A solid phase extraction and gas chromatography with negative chemical ionization mass spectrometry in scan mode (GC-NCI-MS) method was developed to identify and quantify for the first time low levels of organochlorine pesticides (OCs) in plasma samples of less than 100 microl from wild birds. The method detection limits ranged from 0.012 to 0.102 pg/microl and the method reporting limit from 0.036 to 0.307 pg/microl for alpha, gamma, beta and delta-hexachlorocyclohexane (HCH), heptachlor, aldrin, heptachlor epoxide, endosulfan I, 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (p,p'-DDE), dieldrin, endrin, endosulfan-II, endrin-aldehyde and endosulfan-sulfate. Pesticide levels in small serum samples from individual Falco sparverius, Sturnella neglecta, Mimus polyglottos and Columbina passerina were quantified. Concentrations ranged from not detected (n/d) to 204.9 pg/microl for some OC pesticides. All levels in the food web in and around cultivated areas showed the presence of pesticides notwithstanding the small areas for agriculture existing in the desert of Baja California peninsula.  相似文献   
684.
Despite the influence that amphibians have on the flow of energy and nutrients in ecological systems, the role that amphibians play in transporting contaminants through food webs has received very little attention. This study was undertaken to investigate bioaccumulation of trace elements in amphibians relative to other small aquatic organisms in a contaminated wetland. We collected bullfrog larvae (Rana catesbeiana) along with three other species of small vertebrates and four species of invertebrates from a site contaminated with a wide array of trace elements and analyzed them for trace element concentrations and stable nitrogen and carbon isotope composition. We found that amphibian larvae accumulated the highest concentrations of most trace elements, possibly due to their feeding ecology. These results suggest that omnivorous amphibian larvae can serve as a critical link for trace element trophic transfer. Their propensity to accumulate trace elements may have important implications for amphibian health in contaminated environments and should be further investigated.  相似文献   
685.
A regional modeling system was applied with inputs from global climate and chemistry models to quantify the effects of global change on future biogenic emissions and their impacts on ozone and biogenic secondary organic aerosols (BSOA) in the US. Biogenic emissions in the future are influenced by projected changes in global and regional climates and by variations in future land use and land cover (LULC). The modeling system was applied for five summer months for the present-day case (1990–1999, Case 1) and three future cases covering 2045–2054. Individual future cases were: present-day LULC (Case 2); projected-future LULC (Case 3); and future LULC with designated regions of tree planting for carbon sequestration (Case 4). Results showed changing future meteorology with present-day LULC (Case 2) increased average isoprene and monoterpene emission rates by 26% and 20% due to higher temperature and solar insolation. However when LULC was changed together with climate (Case 3), predicted isoprene and monoterpene emissions decreased by 52% and 31%, respectively, due primarily to projected cropland expansion. The reduction was less, at 31% and 14% respectively, when future LULC changes were accompanied by regions of tree planting (Case 4). Despite the large decrease in biogenic emission, future average daily maximum 8-h (DM8H) ozone was found to increase between +8 ppbv and +10 ppbv due to high future anthropogenic emissions and global chemistry conditions. Among the future cases, changing LULC resulted in spatially varying future ozone differences of ?5 ppbv to +5 ppbv when compared with present-day case. Future BSOA changed directly with the estimated monoterpene emissions. BSOA increased by 8% with current LULC (Case 2) but decreased by 45%–28% due to future LULC changes. Overall, the results demonstrated that on a regional basis, changes in LULC can offset temperature driven increases in biogenic emissions, and, thus, LULC projection is an important factor to consider in the study of future regional air quality.  相似文献   
686.
In urban and suburban areas, stormwater runoff is a primary stressor on surface waters. Conventional urban stormwater drainage systems often route runoff directly to streams and rivers, thus exacerbating pollutant inputs and hydrologic disturbance, and resulting in the degradation of ecosystem structure and function. Decentralized stormwater management tools, such as low impact development (LID) or water sensitive urban design (WSUD), may offer a more sustainable solution to stormwater management if implemented at a watershed scale. These tools are designed to pond, infiltrate, and harvest water at the source, encouraging evaporation, evapotranspiration, groundwater recharge, and re-use of stormwater. While there are numerous demonstrations of WSUD practices, there are few examples of widespread implementation at a watershed scale with the explicit objective of protecting or restoring a receiving stream. This article identifies seven major impediments to sustainable urban stormwater management: (1) uncertainties in performance and cost, (2) insufficient engineering standards and guidelines, (3) fragmented responsibilities, (4) lack of institutional capacity, (5) lack of legislative mandate, (6) lack of funding and effective market incentives, and (7) resistance to change. By comparing experiences from Australia and the United States, two developed countries with existing conventional stormwater infrastructure and escalating stream ecosystem degradation, we highlight challenges facing sustainable urban stormwater management and offer several examples of successful, regional WSUD implementation. We conclude by identifying solutions to each of the seven impediments that, when employed separately or in combination, should encourage widespread implementation of WSUD with watershed-based goals to protect human health and safety, and stream ecosystems.  相似文献   
687.
Tsetse flies are the vectors of trypanosomes, the causal agent of trypanosomiasis, a widespread disease of livestock and people in Africa. Control of tsetse may open vast areas of land to livestock-keeping, with the associated benefits of developing mixed crop-livestock production systems. However, as well as possible positive impacts there are also risks: bush clearing would accelerate and cattle numbers would rise, leading to a reduction of vegetation cover, and an increase in runoff and erosion; there may also be increased pressure on conserved areas and reductions in biodiversity. The objective of this study is to show how remotely sensed and other environmental data can be combined in a decision support system to help inform tsetse control programmes in a manner that could be used to limit possible detrimental effects of tsetse control. For Zambia, a methodology is developed that combines a tree-based decision-support approach with the use of Multiple-Criteria Evaluation (MCE), within a Geographical Information System (GIS), in order to target areas for tsetse control. The results show clear differentiation of priority areas under a series of hypothetical scenarios, and some areas (e.g. northwest of Petauke in the Eastern Province of Zambia) are consistently flagged as high priority for control. It is also demonstrated that priority areas do not comprise isolated tsetse populations, meaning that disease control using an integrated approach is likely to be more economically viable than local eradication.  相似文献   
688.
In the mineral rich but arid Pilbara region of Western Australia, managing water constraints represents a significant challenge to the mining sector where local depletion is a growing problem. Conversely, the expansion of pit dewatering is creating surface water excess in localised areas of potentially high social and ecological significance. Indigenous people are by far the longest term residents of the Pilbara region and express a range of strong concerns about past, current and future water-related developments in the area. They also have proprietary interests in water recognised by the common law and protected by federal native title legislation. Rio Tinto Iron Ore (RTIO), commissioned the authors to undertake research to improve corporate understanding of Indigenous interests in water and to provide advice on its consultation processes. We argue here that a more sophisticated account of Indigenous water values is a necessary but, on its own, insufficient measure to achieve RTIO’s desired long-term goals. We suggest an equivalent process of understanding and documenting corporate water values and interests, actions to improve trust and credibility in the relationship between the parties, and leadership in wider catchment management as necessary complementary actions. These actions follow logically from internal corporate commitments regarding water and Indigenous people and from recognition of their property rights, but also align directly with major trends in the National Water Initiative, the key water policy framework for Australia. Therefore significant synergies exist between internal corporate aspirations, the evolving legal regime, and wider governance agendas for a key limiting resource. Our analysis is relevant to a range of CSR and water resource contexts across the wider mining sector.  相似文献   
689.
Worldwide, about 150 000 infants are born with spina bifida yearly, making this condition one of the most common fetal central nervous system anomalies compatible with life. Over the last decade, major changes have been introduced in the prenatal diagnosis and management of spina bifida. In this review, we provide a brief summary of the current management of fetal spina bifida and present essential information that should be provided to expecting parents when their fetus has been diagnosed with spina bifida. This information is focused around common parental questions, as encountered in our typical clinical practice, to facilitate knowledge translation.  相似文献   
690.
Carroll, Rosemary W.H., Greg Pohll, David McGraw, Chris Garner, Anna Knust, Doug Boyle, Tim Minor, Scott Bassett, and Karl Pohlmann, 2010. Mason Valley Groundwater Model: Linking Surface Water and Groundwater in the Walker River Basin, Nevada. Journal of the American Water Resources Association (JAWRA) 46(3):554-573. DOI: 10.1111/j.1752-1688.2010.00434.x Abstract: An integrated surface water and groundwater model of Mason Valley, Nevada is constructed to replicate the movement of water throughout the different components of the demand side of water resources in the Walker River system. The Mason Valley groundwater surface water model (MVGSM) couples the river/drain network with agricultural demand areas and the groundwater system using MODFLOW, MODFLOW’s streamflow routing package, as well as a surface water linking algorithm developed for the project. The MVGSM is capable of simulating complex feedback mechanisms between the groundwater and surface water system that is not dependent on linearity among the related variables. The spatial scale captures important hydrologic components while the monthly stress periods allow for seasonal evaluation. A simulation spanning an 11-year record shows the methodology is robust under diverse climatic conditions. The basin-wide modeling approach predicts a river system generally gaining during the summer irrigation period but losing during winter months and extended periods of drought. River losses to the groundwater system approach 25% of the river’s annual budget. Reducing diversions to hydrologic response units will increase river flows exiting the model domain, but also has the potential to increase losses from the river to groundwater storage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号