首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   420篇
  免费   14篇
  国内免费   2篇
安全科学   9篇
废物处理   21篇
环保管理   110篇
综合类   63篇
基础理论   115篇
环境理论   1篇
污染及防治   79篇
评价与监测   17篇
社会与环境   15篇
灾害及防治   6篇
  2023年   5篇
  2022年   6篇
  2021年   5篇
  2020年   6篇
  2019年   12篇
  2018年   10篇
  2017年   14篇
  2016年   15篇
  2015年   10篇
  2014年   16篇
  2013年   40篇
  2012年   19篇
  2011年   23篇
  2010年   16篇
  2009年   21篇
  2008年   26篇
  2007年   25篇
  2006年   17篇
  2005年   17篇
  2004年   19篇
  2003年   11篇
  2002年   14篇
  2001年   7篇
  2000年   12篇
  1999年   3篇
  1998年   7篇
  1997年   5篇
  1996年   8篇
  1995年   5篇
  1994年   7篇
  1993年   5篇
  1992年   6篇
  1991年   2篇
  1990年   3篇
  1989年   4篇
  1988年   3篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1982年   4篇
  1979年   1篇
  1971年   1篇
排序方式: 共有436条查询结果,搜索用时 15 毫秒
341.
In light of the rapid urbanization of the world’s population over the past decades, there is a growing concern about the environmental impacts of urban population growth. Rural–urban migration is a particularly important component of the urbanization process in developing countries and is often considered to be detrimental to urban environmental conditions. However, few studies have explicitly examined the presumed negative impacts of in-migration on the natural environment of cities. The continuously increasing volume of rural–urban labor migration in China since the early 1980s has formed the largest population flow in world history. This study links the existing literature on population–environment and urbanization–environment interactions by empirically assessing the relationship between rural–urban migration and urban air conditions in China. A two-period (2004 and 2010) longitudinal dataset for the 113 key environmental protection cities of China was constructed based on multiple data sources. We applied the STIRPAT equation using conventional and spatial panel regression models to examine whether rural–urban migration flows were associated with air pollution in cities. Results show a strong negative association of in-migration with urban air quality even after controlling for the effects of other population, affluence, and technology factors. Findings from this research can contribute to a better understanding of the environmental consequences of rural–urban migration in China, with broader implications for sustainable development research and policies.  相似文献   
342.
343.
344.
345.
346.
The linkage between ecosystems and human well-being is a focus of the conceptualization of “ecosystem services” as promoted by the Millennium Ecosystem Assessment. However, the actual nature of connections between ecosystems and the well-being of individuals remains complex and poorly understood. We conducted a series of qualitative focus groups with five different stakeholder groups connected to a small-scale Kenyan coastal fishery to understand (1) how well-being is understood within the community, and what is important for well-being, (2) how people’s well-being has been affected by changes over the recent past, and (3) people’s hopes and aspirations for their future fishery. Our results show that people conceive well-being in a diversity of ways, but that these can clearly map onto the MA framework. In particular, our research unpacks the “freedoms and choices” element of the framework and argues for greater recognition of these aspects of well-being in fisheries management in Kenya through, for example, more participatory governance processes.  相似文献   
347.
氢氧化镁是一种正在研究的用于脱除烟气中低浓度CO2的化学吸收剂。为了掌握工业用氢氧化镁粉末的溶解速率,利用缓冲溶液,在不改变溶液体积的情况下对不同悬浊液浓度、溶液温度、溶液pH值和搅拌速率情况下的氢氧化镁粉末溶解速率进行了研究。提高悬浊液浓度、提高溶液温度、降低溶液pH值和提高搅拌速率均能增大氢氧化镁的溶解速率。悬浊液浓度从0.1 mol/L增加到1 mol/L时,溶解速率增大了2.2倍;温度从23℃增加到52℃时,溶解速率增大了4.3~9.5倍;pH值从9.8降低到6.6时,溶解速率增大了78~225倍;搅拌速率从350 r/min增加到700 r/min时,溶解速率增大了1~2倍。  相似文献   
348.
Coal fly ash (CFA) is a significant environmental pollutant that presents a respiratory hazard when airborne. Although previous studies have identified the mineral components of CFA, there is a paucity of information on the structural habits of these minerals. Samples from UK, Polish and Chinese power stations were studied to further our understanding of the factors that affect CFA geochemistry and mineralogy. ICP-MS, FE-SEM/EDX, XRD, and laser diffraction were used to study physicochemical characteristics. Analysis revealed important differences in the elemental compositions and particle size distributions of samples between sites. Microscopy of HF acid-etched CFA revealed the mullite present possesses a fibrous habit; fibres ranged in length between 1 and 10 μm. Respirable particles (<10 μm) were frequently observed to contain fibrous mullite. We propose that the biopersistence of these refractory fibres in the lung environment could be contributing towards chronic lung diseases seen in communities and individuals continually exposed to high levels of CFA.  相似文献   
349.
The authors have successfully developed novel efficient and cost-effective sorbent and oxidant for removing mercury from power plant flue gases. These sorbent and oxidant offer great promise for controlling mercury emissions from coal-fired power plants burning a wide range of coals including bituminous, sub-bituminous, and lignite coals. A preliminary analysis from the bench-scale test results shows that this new sorbent will be thermally more stable and cost-effective in comparison with any promoted mercury sorbents currently available in the marketplace. In addition to the sorbent, an excellent elemental mercury (Hg(0)) oxidant has also been developed, and will enable coal-fired power plants equipped with wet scrubbers to simultaneously control their mercury emissions as well as their sulfur oxides emissions. This will work by converting all elemental mercury to an oxidized form which will be removed by the wet scrubber. This will result in significant cost savings for mercury emissions control to the atmosphere, and will help in keeping electric costs low. The sorbent and oxidant will benefit from the utilization of a waste stream from the printed circuit board (PCB) industry, and would thus be environmentally beneficial to both of the utility and electronics industries. The sorbent also demonstrated thermal stability up to 350°C, suggesting a possibility of an application in pulverized coal-fired power plants equipped with hot-side electrostatic precipitators and coal gasification plants.  相似文献   
350.
Nitrate in water removed from fields by subsurface drain ('tile') systems is often at concentrations exceeding the 10 mg N L(-1) maximum contaminant level (MCL) set by the USEPA for drinking water and has been implicated in contributing to the hypoxia problem within the northern Gulf of Mexico. Because previous research shows that N fertilizer management alone is not sufficient for reducing NO(3) concentrations in subsurface drainage below the MCL, additional approaches are needed. In this field study, we compared the NO(3) losses in tile drainage from a conventional drainage system (CN) consisting of a free-flowing pipe installed 1.2 m below the soil surface to losses in tile drainage from two alternative drainage designs. The alternative treatments were a deep tile (DT), where the tile drain was installed 0.6 m deeper than the conventional tile depth, but with the outlet maintained at 1.2 m, and a denitrification wall (DW), where trenches excavated parallel to the tile and filled with woodchips serve as additional carbon sources to increase denitrification. Four replicate 30.5- by 42.7-m field plots were installed for each treatment in 1999 and a corn-soybean rotation initiated in 2000. Over 5 yr (2001-2005) the tile flow from the DW treatment had annual average NO(3) concentrations significantly lower than the CN treatment (8.8 vs. 22.1 mg N L(-1)). This represented an annual reduction in NO(3) mass loss of 29 kg N ha(-1) or a 55% reduction in nitrate mass lost in tile drainage for the DW treatment. The DT treatment did not consistently lower NO(3) concentrations, nor reduce the annual NO(3) mass loss in drainage. The DT treatment did exhibit lower NO(3) concentrations in tile drainage than the CN treatment during late summer when tile flow rates were minimal. There was no difference in crop yields for any of the treatments. Thus, denitrification walls are able to substantially reduce NO(3) concentrations in tile drainage for at least 5 yr.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号