首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   237篇
  免费   2篇
  国内免费   1篇
安全科学   3篇
废物处理   5篇
环保管理   21篇
综合类   64篇
基础理论   53篇
环境理论   1篇
污染及防治   62篇
评价与监测   6篇
社会与环境   22篇
灾害及防治   3篇
  2022年   3篇
  2021年   6篇
  2020年   6篇
  2019年   2篇
  2018年   7篇
  2017年   9篇
  2016年   7篇
  2015年   10篇
  2014年   8篇
  2013年   6篇
  2012年   11篇
  2011年   19篇
  2010年   8篇
  2009年   20篇
  2008年   9篇
  2007年   11篇
  2006年   12篇
  2005年   5篇
  2004年   3篇
  2003年   8篇
  2002年   5篇
  2001年   3篇
  2000年   5篇
  1999年   4篇
  1997年   3篇
  1994年   2篇
  1991年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1977年   1篇
  1975年   3篇
  1965年   2篇
  1964年   4篇
  1963年   5篇
  1962年   4篇
  1961年   5篇
  1960年   1篇
  1957年   1篇
  1955年   2篇
  1954年   3篇
  1951年   1篇
  1950年   1篇
  1943年   1篇
  1932年   1篇
  1931年   1篇
  1930年   1篇
排序方式: 共有240条查询结果,搜索用时 31 毫秒
151.
152.
Habitat loss, fragmentation, and degradation have pervasive detrimental effects on tropical forest biodiversity, but the role of the surrounding land use (i.e., matrix) in determining the severity of these impacts remains poorly understood. We surveyed bird species across an interior-edge-matrix gradient to assess the effects of matrix type on biodiversity at 49 different sites with varying levels of landscape fragmentation in the Brazilian Atlantic Forest—a highly threatened biodiversity hotspot. Both area and edge effects were more pronounced in forest patches bordering pasture matrix, whereas patches bordering Eucalyptus plantation maintained compositionally similar bird communities between the edge and the interior and exhibited reduced effects of patch size. These results suggest the type of matrix in which forest fragments are situated can explain a substantial amount of the widely reported variability in biodiversity responses to forest loss and fragmentation.  相似文献   
153.
154.
A spatially differentiated, management-revised projection of natural water availability up to 2053 was requested for a basin-wide scenario study about the impact of global change in the Elbe River basin. Detailed discharge and weather information of the recent years 1951–2003 were available for model calibration and validation. However, the straightforward “classic” approach of calibrating a hydrological model on observed data and running it with a climate scenario could not be taken, because most observed river runoffs in Central Europe are modified by human management. This paper reports how the problem was addressed and how a major projection bias could be avoided. The eco-hydrological model SWIM was set up to simulate the discharge dynamics on a daily time step. The simulation area of 134,890?km2 was divided into 2,278 sub-basins that were subdivided into more than 47,500 homogeneous landscape units (hydrotopes). For each hydrotope, plant growth and water fluxes were simulated while river routing calculation was based on the sub-basin structure. The groundwater module of SWIM had to be extended for accurate modelling of low flow periods. After basin-scale model calibration and revisions for known effects of lignite mining and water management, evapotranspiration and groundwater dynamics were adjusted individually for more than 100 sub-areas largely covering the entire area. A quasi-natural hydrograph was finally derived for each sub-area taking into account management data for the years 2002 (extremely wet) and 2003 (extremely dry). The validated model was used to access the effect of two climate change scenarios consisting of 100 realisations each and resembling temperature increases of 2 and 3?K, respectively. Additionally, four different land use scenarios were considered. In all scenario projections, discharge decreases strongly: The observed average discharge rate in the reference period 1961–1990 is 171?mm/a, and the scenario projections for the middle of the twenty-first century give 91–110?mm/a, mainly depending on the climate scenario. The area-averaged evapotranspiration increases only marginally within the scenario period, e.g., from about 570 to about 580?mm/a for the temperature increase of 2?K, while potential evapotranspiration increases considerably from about 780 to more than 900?mm/a. Both discharge and evapotranspiration changes vary strongly within the basin, correlating with elevation. The runoff coefficient that globally decreases from 0.244 to 0.160 in the 2?K scenario is locally governed primarily by land use; 68% of the variance of the decreases can be attributed to this factor.  相似文献   
155.
156.
157.
The maximum population, also called Earth's carrying capacity, is the maximum number of people that can live on the food and other resources available on planet Earth. Previous investigations estimated the maximum carrying capacity as large as about 1 trillion people under the assumption that photosynthesis is the limiting process. Here we use a present state-of-the-art dynamic global vegetation model with managed planetary land surface, Lund-Potsdam-Jena managed Land (LPJmL), to calculate the yields of the most productive crops on a global 0.5° × 0.5° grid. Using the 2005 crop distribution the model predicts total harvested calories that are sufficient for the nutrition of 11.4 billion people. We define scenarios where humankind uses the whole land area for agriculture, saves the rain forests and the boreal evergreen forests or cultivates only pasture to feed animals. Every scenario is run in an extreme version with no allowance for urban and recreational needs and in two soft versions with a certain area per person for non-agricultural use. We find that there are natural limits of the maximum carrying capacity which are independent of any increase in agricultural productivity, if non-agricultural land use is accounted for. Using all land planet Earth can sustain 282 billion people. The save-forests-scenario yields 150 billion people. The scenario that cultivates only pasture to feed animals yields 96 billion people. Nevertheless, we should always have in mind that all our calculated numbers for the carrying capacity refer to extreme scenarios where humankind may only vegetate on this planet. Our numbers are considerably higher than the general median estimate of upper bounds of human population found in the literature in the order of 10 billion.  相似文献   
158.
It was the aim of this study to evaluate the effect of different devices on the metal concentration in exhaled breath condensate (EBC) and to prove whether working conditions in different welding companies result in diverse composition of metallic elements. The influence of two collection devices (ECoScreen, ECoScreen2) on detection of metallic elements in EBC was evaluated in 24 control subjects. Properties of ECoScreen and a frequent use can alter EBC metal content due to contamination from metallic components. ECoScreen2 turned out to be favourable for metal assessment. Concentrations of iron, nickel and chromium in EBC sampled with ECoScreen2 were compared between non-exposed controls and industrial welders. Metal concentrations in EBC were higher in 36 welders recruited from three companies. Exposure to welding fumes could be demonstrated predominantly for increased iron concentrations. Concentrations of iron and nickel differed by working conditions, but chromium could not be detected in EBC.  相似文献   
159.
Adjusting to low temperatures is important for animals living in cold environments. We studied the chill–coma recovery time in temperate ant workers (Temnothorax nylanderi) from colonies collected in autumn and spring in Germany. We experimentally acclimated these ant colonies to cold temperatures followed by warm temperatures. As expected, cold-acclimated workers recovered faster from freezing temperatures, but subsequent heat acclimation did not change the short recovery times observed after cold acclimation. Hence, either heat acclimation improves cold tolerance, possibly as a general response to stress, or at least it does not negate enhanced cold tolerance following cold acclimation. Colonies collected in spring showed similar cold tolerance levels to cold-acclimated colonies in the laboratory. Next, we compared the chill–coma recovery time of different worker castes and found that exterior workers recovered faster than interior workers. This difference may be related to their more frequent exposure to cold, higher activity level, or distinct physiology. Interior workers were also heavier and showed a higher gaster-to-head ratio and thorax ratio compared to exterior workers. An obvious difference between exterior and interior workers is activity level, but we found no link between activity and cold tolerance. This suggests that physiology rather than behavioral differences could cause the increased cold tolerance of exterior workers. Our study reveals the importance of acclimation for cold tolerance under natural and standardized conditions and demonstrates differences in cold tolerance and body dimensions in monomorphic behavioral castes of an ant.  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号