首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   295篇
  免费   13篇
  国内免费   2篇
安全科学   17篇
废物处理   14篇
环保管理   75篇
综合类   14篇
基础理论   87篇
污染及防治   69篇
评价与监测   26篇
社会与环境   6篇
灾害及防治   2篇
  2023年   2篇
  2022年   2篇
  2021年   3篇
  2019年   3篇
  2018年   10篇
  2017年   8篇
  2016年   15篇
  2015年   7篇
  2014年   9篇
  2013年   20篇
  2012年   13篇
  2011年   24篇
  2010年   14篇
  2009年   13篇
  2008年   19篇
  2007年   21篇
  2006年   26篇
  2005年   13篇
  2004年   14篇
  2003年   13篇
  2002年   13篇
  2001年   1篇
  2000年   6篇
  1999年   2篇
  1998年   1篇
  1997年   5篇
  1996年   2篇
  1994年   2篇
  1993年   5篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1988年   2篇
  1987年   2篇
  1985年   2篇
  1982年   3篇
  1979年   2篇
  1978年   1篇
  1977年   3篇
  1976年   2篇
排序方式: 共有310条查询结果,搜索用时 953 毫秒
241.
Indole and 3-methylindole (skatole) are odor pollutants in livestock waste, and skatole is a major component of boar taint. Skatole causes pulmonary edema and emphysema in ruminants and causes damage to lung Clara cells in animals and humans. A gas chromatographic method that originally used a nitrogen–phosphorus detector to increase sensitivity was modified resulting in an improved flame ionization detection response for indole and skatole of 236% and 207%, respectively. The improved method eliminates the large amount of indole decomposition in the injector. A 10 μ g mL–1 spike of indole and skatole in water and swine fecal slurries resulted in recovery of 78.5% and 96% in water and 76.1% and 85.8% in fecal slurries, respectively. The effect of the addition of nitroethane and nitroethanol at 21.8 mM in swine fecal slurries was studied on the microbial production of indole and skatole. Nitroethane and nitroethanol decreased the production of skatole in swine fecal slurries at 24 h. The nitroethane effect on l-tryptophan-supplemented fecal slurries after 6 and 24 h incubation resulted in a decrease of 69.0% (P = 0.02) and 23.5% skatole production, respectively, and a decrease of 14.9% indole at 6 h, but an increase in indole production of 81.1% at 24 h.  相似文献   
242.
This paper is responsive to needs to describe and predict the environmental effects from power plant cooling ponds. A study was made to determine atmospheric and pond surface conditions required for steam fog to occur from power plant cooling ponds, to define the dimensions of the fog, and to collect data on deposition of ice. Data, collected principally at the 4-Corners Plant over a three-year period, included water surface temperature, ambient meteorological conditions and occurrence and magnitude of steam fog and ice deposition. With strong winds, the fog extended onshore without lifting. With light winds, the fog extended some distance onshore but then lifted to form stratus. With almost calm winds, the steam fog lifted over the pond and drifted downwind as stratus. Steam fog was observed in winds to 28 mph, air-water temperature differences from 21.5° to 68°F and in atmospheric stability categories C, D, E, and F. A fog index number, Ar/(es — ea)°F/mbs, was defined and used for data interpretation, where Ar is temperature of water less temperature of ambient air, es is the saturation vapor pressure of the ambient air and ea is the actual vapor pressure of the ambient air. The probability of occurrence of steam fog as a function of the fog index number varied from 0.04 for an index number less than 10 to 1.00 for an index number greater than 90. From the data, if fog occurred, its extent along the ground was ≥100 feet 88% of the time, ≥500 feet 35% of the time, ≥1000 feet 18% of the time, and ≥5000 feet 12% of the time. If stratus occurred its extent above ground was ≥1 mile 91% of the time, ≥5 miles 55% of the time and ≥10 miles 36% of the time. Measurements showed that steam fog droplet sizes predominate in the 10 micron diameter size. Values of liquid water content up to 0.20 g/m3 were reported. Ice accretion data show build-up rates from 0.23 to 13 mm/hr of rime.  相似文献   
243.
Abstract

This paper evaluates the application of dispersion models to estimate near-field pollutant concentrations in two case studies. The Industrial Source Complex Short-Term Model (ISCST3) was evaluated with hexavalent chromium measurements collected within 100 m of two facilities in Barrio Logan, San Diego, CA. ISCST3 provided reasonable estimates for higher pollutant concentrations but underestimated lower concentrations. To understand the observed distribution of concentrations in Barrio Logan, a recently conducted tracer experiment was analyzed. The tracer, sulfur hexafluoride, was released at ambient temperature from an urban facility at the University of California at Riverside, and concentrations were measured within 20 m of the source. Modeling results indicated that Industrial Source Complex–Plume Rise Model Enhancement and American Meteorological Society/U.S. Environmental Protection Agency Regulatory Model–Plume Rise Model Enhancement overestimated high concentrations and underestimated low concentrations. A diagnostic study with a simple Gaussian dispersion model that incorporated site-specific meteorology was used to evaluate model results. This study found that incorporating lateral meandering for nonbuoyant urban plumes in Gaussian dispersion models could improve concentration estimates even when downwash is not considered. Incorporating a meandering component in ISCST3 resulted in improvements in estimating hexavalent chromium concentrations in Barrio Logan. Credible near-source concentration estimates depend on accurate characterization of emissions, onsite micrometeorology, and a method to account for lateral meandering in the near field.  相似文献   
244.
Abstract

Waste distribution and compaction at the working face of municipal waste landfills releases mercury vapor (Hg0) to the atmosphere, as does the flaring of landfill gas. Waste storage and processing before its addition to the landfill also has the potential to release Hg0 to the air if it is initially present or formed by chemical reduction of HgII to Hg0 within collected waste. We measured the release of Hg vapor to the atmosphere during dumpster and transfer station activities and waste storage before landfilling at a municipal landfill operation in central Florida. We also quantified the potential contribution of specific Hg-bearing wastes, including mercury (Hg) thermometers and fluorescent bulbs, and searched for primary Hg sources in sorted wastes at three different landfills. Surprisingly large fluxes were estimated for Hg losses at transfer facilities (~100 mg/hr) and from dumpsters in the field (~30 mg/hr for 1,000 dumpsters), suggesting that Hg emissions occurring before landfilling may constitute a significant fraction of the total emission from the disposal/landfill cycle and a need for more measurements on these sources. Reducing conditions of landfill burial were obviously not needed to generate strong Hg0 signals, indicating that much of the Hg was already present in a metallic (Hg0) form. Attempts to identify specific Hg sources in excavated and sorted waste indicated few readily identifiable sources; because of effective mixing and diffusion of Hg0, the entire waste mass acts as a source. Broken fluorescent bulbs and thermometers in dumpsters emitted Hg0 at 10 to >100 μg/hr and continued to act as near constant sources for several days.  相似文献   
245.
Abstract

This study was conducted to determine the effects of pesticide mixtures on degradation patterns of parent compounds as well as effects on soil microbial respiration. Bioavailability of residues to sensitive plant species was also determined. Soil for this study was obtained from a pesticide‐contaminated area within an agrochemical dealer site. Degradation patterns were not affected by the presence or absence of other herbicides in this study. Atrazine concentrations were significantly lower at 21 through 160 days aging time compared to day 0 concentrations. Metolachlor and pendimethalin concentrations were not significantly different over time and remained high throughout the study. Microbial respiration was suppressed in treated soils from day 21 to day 160. Soybean and canola were the most successful plant species in the germination and survival tests. Generally, with increased aging of pesticides in soil, germination time decreased. Survival time of plants increased over time for some treatments indicating possible decreased bioavailability of pesticide residues. In some cases, survival time decreased at the longer 160‐day aging period, possibly indicating a change in bioavailability, perhaps as the result of formation of more bioavailable and phytotoxic metabolites. No interactive effects were noted for mixtures of pesticides compared to individually applied pesticides in terms of degradation of the parent compound or on seed germination, plant survival, or microbial respiration.  相似文献   
246.
Immediately following hurricane Katrina concern was raised over the environmental impact of floodwaters on the city of New Orleans, especially in regard to human health. Several studies were conducted to determine the actual contaminant distribution throughout the city and surrounding wetlands by analyzing soil, sediment, and water for a variety of contaminants including organics, inorganics, and biologics. Preliminary investigations by The Institute of Environmental and Human Health at Texas Tech University concluded that soils and sediments contained pesticides, semi-volatiles, and metals, specifically arsenic, iron, and lead, at concentrations that could pose a significant risk to human health. Additional studies on New Orleans floodwaters revealed similar constituents as well as compounds commonly found in gasoline. More recently, it has been revealed that lead (Pb), arsenic, and vanadium are found intermittently throughout the city at concentrations greater than the human health soil screening levels (HHSSLs) of 400, 22 (non-cancer endpoint) and 390 μg/g, respectively. Of these, Pb appears to present the greatest exposure hazard to humans as a result of its extensive distribution in city soils. In this study, we spatially evaluated Pb concentrations across greater New Orleans surface soils. We established 128 sampling sites throughout New Orleans at approximately half-mile intervals. A soil sample was collected at each site and analyzed for Pb by ICP-AES. Soils from 19 (15%) of the sites had Pb concentrations exceeding the HHSSL threshold of 400 μg/g. It was determined that the highest concentrations of Pb were found in the south and west portions of the city. Pb concentrations found throughout New Orleans in this study were then incorporated into a geographic information system to create a spatial distribution model that can be further used to predict Pb exposure to humans in the city.  相似文献   
247.
Species distribution models (SDMs) can provide useful information for managing biological invasions, such as identification of priority areas for early detection or for determining containment boundaries. However, prediction of invasive species using SDMs can be challenging because they typically violate the core assumption of being at equilibrium with their environment, which may lead to poorly guided management resulting from high levels of omission. Our goal was to provide a suite of potential decision strategies (DSs) that were not reliant on the equilibrium assumption but rather could be chosen to better match the management application, which in this case was to ensure containment through adequate surveillance. We used presence-only data and expert knowledge for model calibration and presence/absence data to evaluate the potential distribution of an introduced mesquite (Leguminoseae: Prosopis) invasion located in the Pilbara Region of northwest Western Australia. Five different DSs with varying levels of conservatism/risk were derived from a multi-criteria evaluation model using ordered weighted averaging. The performance of DSs over all possible thresholds was examined using receiver operating characteristic (ROC) analysis. DSs not on the convex hull of the ROC curves were discarded. Two threshold determination methods (TDMs) were compared on the two remaining DSs, one that assumed equilibrium (by maximizing overall prediction success) and another that assumed the invasion was ongoing (using a 95% threshold for true positives). The most conservative DS fitted the validation data most closely but could only predict 75% of the presence data. A more risk-taking DS could predict 95% of the presence data, which identified 8.5 times more area for surveillance, and better highlighted known populations that are still rapidly invading. This DS and TDM coupling was considered to be the most appropriate for our management application. Our results show that predictive niche modeling was highly sensitive to risk levels, but that these can be tailored to match specified management objectives. The methods implemented can be readily adapted to other invasive species or for conservation purposes.  相似文献   
248.
Evidence from different chickadee species (Poecile genus) indicates that birds can modify the note composition of their “chick-a-dee” calls in the presence of predator stimuli. Here, we tested the effects of predator models and the distance of those models on calls of three species foraging together at feeding stations: Carolina chickadees (Poecile carolinensis) and tufted titmice (Baeolophus bicolor), both members of the Paridae family, and white-breasted nuthatches (Sitta carolinensis), a member of the Sittidae family. Model and distance affected seed-taking rates in all three species. “Chick-a-dee” calling rates were higher in the predator context for both chickadees and titmice, but we detected no predator context effects on “quank” call rates for nuthatches. Predator and distance contexts affected acoustic parameters of notes of the “chick-a-dee” calls of chickadees and titmice; no such effects were detected for nuthatch “quank” calls. These results suggest species differences in encoding of information in the primary social calls of these three species that commonly occur in multi-species flocks. Chickadees and titmice are “nuclear” species and nuthatches are “satellite” species, and these different roles might be related to the differences in vocal signaling that we detected.  相似文献   
249.
Chick-a-dee calls function in social organization in Poecile (chickadee) species. Recent field and aviary studies have found that variation in chick-a-dee calls relates to the type or proximity of avian predator, or level of threat. Earlier studies on calls in the context of predator stimuli have typically used stationary and perched predator models. For chickadees and other small songbirds, more frequently detected and more dangerous avian predatory stimuli are flying predators. In the present study, we tested whether simulated flying avian predator and control models influenced chick-a-dee calling behavior of wild Carolina chickadees, Poecile carolinensis. At 20 independent field sites, chickadee subjects were presented with wooden models that were painted to resemble either a predatory sharp-shinned hawk (Accipiter striatus) or a blue jay (Cyanocitta cristata) and that were made to “fly” down a zip line near a feeding station chickadees were using. The note composition of chick-a-dee calls was affected by both the flight of stimuli and type of model. Call variation in this flying predator context suggests interesting similarities and differences with experimental findings with congeners. Finally, increased production of certain notes to the flying of both model types provides support for a “Better Safe than Sorry” strategy. When costs of alarm calling are low but costs of discriminating potentially serious threats may be extremely high, individuals should err on the side of caution, and alarm call to any potentially threatening stimulus.  相似文献   
250.
Rapidly growing cities along the Interstate-85 corridor from Atlanta, GA, to Raleigh, NC, rely on small rivers for water supply and waste assimilation. These rivers share commonalities including water supply stress during droughts, seasonally low flows for wastewater dilution, increasing drought and precipitation extremes, downstream eutrophication issues, and high regional aquatic diversity. Further challenges include rapid growth; sprawl that exacerbates water quality and infrastructure issues; water infrastructure that spans numerous counties and municipalities; and large numbers of septic systems. Holistic multi-jurisdiction cooperative water resource planning along with policy and infrastructure modifications is necessary to adapt to population growth and climate. We propose six actions to improve water infrastructure resilience: increase water-use efficiency by municipal, industrial, agricultural, and thermoelectric power sectors; adopt indirect potable reuse or closed loop systems; allow for water sharing during droughts but regulate inter-basin transfers to protect aquatic ecosystems; increase nutrient recovery and reduce discharges of carbon and nutrients in effluents; employ green infrastructure and better stormwater management to reduce nonpoint pollutant loadings and mitigate urban heat island effects; and apply the CRIDA framework to incorporate climate and hydrologic uncertainty into water planning.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号