首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113篇
  免费   0篇
  国内免费   17篇
安全科学   3篇
废物处理   20篇
环保管理   4篇
综合类   25篇
基础理论   29篇
污染及防治   41篇
评价与监测   4篇
社会与环境   3篇
灾害及防治   1篇
  2023年   2篇
  2021年   1篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   7篇
  2013年   18篇
  2012年   6篇
  2011年   5篇
  2010年   5篇
  2009年   4篇
  2008年   3篇
  2007年   15篇
  2006年   8篇
  2005年   4篇
  2004年   7篇
  2003年   6篇
  2002年   6篇
  2001年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1989年   2篇
  1988年   1篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1977年   1篇
  1975年   2篇
排序方式: 共有130条查询结果,搜索用时 31 毫秒
71.
This paper reports on the photodecomposition of aqueous humic acid (HA) by a TiO2-coated ceramic foam filter (TCF) reactor and on the potential for the formation of disinfection byproducts (DBPs) upon chlorination of the photocatalytically treated solutions. This photocatalytic reactor can also be applied to the removal of natural organic matter (NOM) in swamp waters. The proposed photocatalytic reaction system was operated as per standardized methodologies. First, the ability of the TCF to decompose HA (a representative compound of NOM) was evaluated from the changes in the total organic carbon (TOC) and UV254 with the reaction time. Remarkably, TOC removal and UV254 values ranging from 44% to 61% and from 60% to 83%, respectively, were achieved. The potential for the formation of DBPs (total trihalomethane and total haloacetic acid) by chlorination of the phototreated solution was strongly dependent on the TOC removal and UV254 values in the solution. The degree of photodecomposition of NOMs in the swamp water samples and the DBP formation potential showed similar trends as in the case of the standard solutions containing HA. The method used in this study could be effectively used to evaluate the efficiency of TCF for reducing HA and NOM, while suppressing the formation of DBP products.  相似文献   
72.
Abstract

Gasoline tracers were collected on solid-phase microextraction (SPME) fibers and analyzed by capillary gas chromatography with photoionization detector (GC/PID). This was part of a larger study to quantify personal exposure to motor vehicle gasoline evaporative and combustive emissions in high-end exposure microenvironments (MEs). The SPME fiber selected for this application was a 75-µm carboxen/polydimethylsiloxane. Sequential 10-min samples were collected for measurement of benzene, toluene, ethylbenzene, and ortho-, meta-, and para-xylene in different MEs in Atlanta, GA, in summer 2002 and Reno, NV, in spring 2003. Field calibrations were performed with certified gas standards in 1-L Tedlar bags for varying concentrations and exposure times. SPME detection limits were ~0.2 ppbv with a precision of 3–17% and accuracy of 30%. A dynamic system was designed for temperature and relative humidity calibrations, with corrections for the effects of these variables performed when necessary. SPME data compared satisfactorily with integrated canister samples, continuous PID, and field portable mass spectrometer data.  相似文献   
73.
Mobile-source air toxic (MSAT) levels increase in confining microenvironments (MEs) with numerous emission sources of vehicle exhaust or evaporative emissions or during high-load and cold-start conditions. Reformulated fuels are expected to reduce MSAT and ozone precursor emissions. This study, required under the Clean Air Act Section 211b, evaluated high-end exposures in cities using reformulated (methyl tertiary-butyl ether [MTBE] or ethanol [EtOH]) fuels and conventional gasoline blends. The study investigates 13 high-end MEs, sampling under enhanced exposure conditions expected to result in maximal fuel and exhaust component exposures to carbon monoxide (CO), carbon dioxide (CO2), BTEX (benzene, toluene, ethylbenzene, xylenes), MTBE, 1,3-butadiene (1,3-BD), EtOH, formaldehyde (HCHO), and acetaldehyde (CH3CHO). The authors found that day-to-day ME variations in high-end benzene, 1,3-BD, HCHO, and CO concentrations are substantial, but independent of gasoline composition and season, and related to the activity and emission rates of ME sources, which differ from day to day.

Implications: Mobile-source air toxic (MSAT) levels increase in confining microenvironments (MEs) in the presence of vehicular exhaust or evaporative emissions. This study, required under the Clean Air Act Section 211b, evaluated high-end exposures in cities using oxygenated (methyl tertiary-butyl ether or ethanol) and conventional gasoline blends. Personal exposure concentrations were quantified in selected MEs representing the upper end of the frequency distribution of potential population exposures. This work presents the first systematic look at high-end/maximal exposures to multiple contaminants, in multiple microenvironments, in multiple cities, over two seasons, for multiple fuels, making it a very complete evaluation of reformulated fuel impacts on MSAT concentrations in confined microenvironments. The study found that day-to-day ME variations of high-end pollutant concentrations are substantial, but independent of gasoline composition and season, and related to the variable daily activity and emission rates of ME sources. The data collected in this study may be used in bounding exposure modeling estimates that account for time spent in similar confining MEs.  相似文献   
74.
This study determined the concentrations of organochlorine contaminants in common seafood in two Chinese coastal cities (Guangzhou and Zhoushan), and assessed the health risk due to the daily consumption of contaminated seafood. Twenty-six pooled samples, belonging to five food categories (fish, bivalves, shrimp, crab, and cephalopods), were purchased from local markets in Guangzhou and Zhoushan in 2003 and 2004. These samples were analyzed for total polychlorinated biphenyls (PCBs), non- and mono-ortho-PCBs (coplanar PCBs), polychlorinated naphthalenes (PCNs), and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDDs/DFs). The concentrations of total PCBs and coplanar PCBs in fish samples were higher in Guangzhou than in Zhoushan, while the levels of PCNs and PCDDs/DFs were comparable between the two cities. The total daily intake values of dioxin-like compounds were 1.05 and 0.86pg WHO-TEQ/kg body weight in Guangzhou and Zhoushan, respectively. Hazard ratios of non-cancer risk in the two cities were all less than unity.  相似文献   
75.
Gasoline tracers were collected on solid-phase microextraction (SPME) fibers and analyzed by capillary gas chromatography with photoionization detector (GC/PID). This was part of a larger study to quantify personal exposure to motor vehicle gasoline evaporative and combustive emissions in high-end exposure microenvironments (MEs). The SPME fiber selected for this application was a 75-microm carboxen/polydimethylsiloxane. Sequential 10-min samples were collected for measurement of benzene, toluene, ethylbenzene, and ortho-, meta-, and para-xylene in different MEs in Atlanta, GA, in summer 2002 and Reno, NV, in spring 2003. Field calibrations were performed with certified gas standards in 1-L Tedlar bags for varying concentrations and exposure times. SPME detection limits were approximately 0.2 ppbv with a precision of 3-17% and accuracy of 30%. A dynamic system was designed for temperature and relative humidity calibrations, with corrections for the effects of these variables performed when necessary. SPME data compared satisfactorily with integrated canister samples, continuous PID, and field portable mass spectrometer data.  相似文献   
76.
This paper evaluates the potential for regional bioenergy recovery as electricity and heat by small-scale methane fermentation systems from organic waste matter generated from urban, industrial, and agricultural sectors. Biogas production functions of high-strength organic wastes are derived from data of implemented methane fermentation systems. The distributions of organic wastes from sewage, household, wholesale/retail, manufacturing, farming, and livestock activities in the Tokyo Bay region are calibrated into a disaggregated spatial database by compiling general activity statistics and emission intensity parameters using Geographic Information System (GIS). Three scenarios of organic matter circulation by co-digestion in sewage treatment plants (STPs) are designed and assessed. Surplus electricity and heat from methane fermentation systems are used for STP operations and household demand. The spatial database allows a preliminary examination for the suitability of locations for technology implementation from the aspects of bioenergy supply and balance. The results show that an additional 368,000-1,328,000MW of electricity would be generated, and 1300-3600TJ of heat could be used by households, reducing the annual emissions of CO(2) from fossil fuels by 307,000-798,000t.  相似文献   
77.
This paper presents the results from using a physical absorption process to absorb gaseous CO_2mixed with N_2using water by producing tiny bubbles via a liquid-film-forming device(LFFD)that improves the solubility of CO_2in water.The influence of various parameters—pressure,initial CO_2concentration,gas-to-liquid ratios,and temperature—on the CO_2removal efficiency and its absorption rate in water were investigated and estimated thoroughly by statistical polynomial models obtained by the utilization of the response surface method(RSM)with a central composite design(CCD).Based on the analysis,a high efficiency of CO_2capture can be reached in conditions such as low pressure,high CO_2concentration at the inlet,low gas/liquid ratio,and low temperature.For instance,the highest removal efficiency in the RSM–CCD experimental matrix of nearly 80%occurred for run number 20,which was conducted at 0.30 MPa,CO_2concentration of 35%,gas/liquid ratio of 0.71,and temperature of 15°C.Furthermore,the coefficients of determination,R~2,were 0.996 for the removal rate and 0.982 for the absorption rate,implying that the predicted values computed by the constructed models correlate strongly and fit well with the experimental values.The results obtained provide essential information for implementing this method properly and effectively and contribute a promising approach to the problem of CO_2capture in air pollution treatment.  相似文献   
78.
Hydrogen(H2) production from lignocellulosic materials may be enhanced by removing lignin and increasing the porosity of the material prior to enzymatic hydrolysis. Alkaline pretreatment conditions,used to delignify disposable wooden chopsticks(DWC) waste, were investigated. The effects of NaOH concentration, temperature and retention time were examined and it was found that retention time had no effect on lignin removal or carbohydrate released in enzymatic hydrolysate. The highest percentage of lignin removal(41%) was obtained with 2% NaOH at 100℃, correlated with the highest carbohydrate released(67 mg/gpretreated DWC) in the hydrolysate. An enriched culture from a hot spring was used as inoculum for fermentative H2 production, and its optimum initial pH and temperature were determined to be 7.0 and 50℃, respectively. Furthermore, enzymatic hydrolysate from pretreated DWC was successfully demonstrated as a substrate for fermentative H2 production by the enriched culture. The maximum H2 yield and production rate were achieved at 195 mL H2/g total sugarsconsumedand 116 mL H2/(L·day), respectively.  相似文献   
79.
Symbiont-bearing large benthic foraminifers (LBFs) are widely distributed around coral reefs. If the physiological responses of LBFs to environmental changes can be recognized at an individual level, LBFs could serve as highly accurate bioindicators. In this study, chlorophyll a, respiration, and photosynthesis of Baculogypsina sphaerulata individuals were measured, and whether these physiological traits could be estimated based on the color of the holobiont (foraminifera and the diatom symbionts) was examined. Chlorophyll a content was estimated using a* and b* values of holobiont color represented in CIE L*a*b* color space. Photosynthetic performance decreased significantly with increasing whiteness (L*). These results indicated chlorophyll content as well as photosynthetic performance of Baculogypsina could be directly estimated using the holobiont color. The increased whiteness in color and decreased photosynthetic performance were mainly observed under low-light environment, possibly indicating symbiotic algae were shrunk into the central part of the host shell due to prolonged exposure to adverse conditions.  相似文献   
80.
Single-wall carbon nanotubes are a major type of nano-objects that have industrial applications such as fuel cells. In this study, four types of single-wall carbon nanotubes and their abilities to aggravate allergic reactions were examined: those containing Fe, those containing Ni, and the corresponding purified metal-free ones. These were administered to mice via pharyngeal aspiration. Subsequently, the mice inhaled ovalbumin a total of eight times over three weeks. After inhalation of ovalbumin, the concentrations of total immunoglobulin E and ovalbumin-specific immunoglobulin E in serum increased in mice treated with purified metal-free and Fe containing single-wall carbon nanotubes while those containing Ni did not affect total and ovalbumin-specific immunoglobulin E levels. Additionally, the purified metal-free and Fe containing nanotubes caused the gene expression of heme oxygenase-1, chemokine (C-X-C motif) ligand 2, and tumor necrosis factor-α, suggesting that some kinds of single-wall carbon nanotubes have the potential to aggravate allergic reactions via oxidative stress and inflammation. Incorporated metals do not seem to be involved in the aggravation of allergic reactions. Other physical properties, such as fiber length and aggregation state, may be involved in enhancing allergic reactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号