首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7123篇
  免费   46篇
  国内免费   26篇
安全科学   154篇
废物处理   281篇
环保管理   694篇
综合类   1069篇
基础理论   1483篇
环境理论   3篇
污染及防治   1710篇
评价与监测   567篇
社会与环境   1198篇
灾害及防治   36篇
  2024年   31篇
  2022年   78篇
  2021年   102篇
  2020年   58篇
  2019年   69篇
  2018年   131篇
  2017年   146篇
  2016年   189篇
  2015年   126篇
  2014年   236篇
  2013年   573篇
  2012年   258篇
  2011年   316篇
  2010年   245篇
  2009年   283篇
  2008年   334篇
  2007年   368篇
  2006年   296篇
  2005年   294篇
  2004年   252篇
  2003年   240篇
  2002年   222篇
  2001年   259篇
  2000年   207篇
  1999年   104篇
  1998年   72篇
  1997年   77篇
  1996年   65篇
  1995年   94篇
  1994年   68篇
  1993年   66篇
  1992年   66篇
  1991年   70篇
  1990年   71篇
  1989年   58篇
  1988年   44篇
  1987年   40篇
  1986年   52篇
  1985年   51篇
  1984年   53篇
  1983年   40篇
  1982年   52篇
  1981年   40篇
  1980年   47篇
  1979年   49篇
  1978年   33篇
  1977年   31篇
  1973年   33篇
  1972年   39篇
  1969年   31篇
排序方式: 共有7195条查询结果,搜索用时 15 毫秒
31.
The formation of secondary organic aerosol from the gas-phase reaction of catechol (1,2-dihydroxybenzene) with ozone has been studied in two smog chambers. Aerosol production was monitored using a scanning mobility particle sizer and loss of the precursor was determined by gas chromatography and infrared spectroscopy, whilst ozone concentrations were measured using a UV photometric analyzer. The overall organic aerosol yield (Y) was determined as the ratio of the suspended aerosol mass corrected for wall losses (Mo) to the total reacted catechol concentrations, assuming a particle density of 1.4 g cm?3. Analysis of the data clearly shows that Y is a strong function of Mo and that secondary organic aerosol formation can be expressed by a one-product gas–particle partitioning absorption model. The aerosol formation is affected by the initial catechol concentration, which leads to aerosol yields ranging from 17% to 86%. The results of this work are compared to similar studies reported in the literature.  相似文献   
32.
Design and redesign of water quality monitoring networks were evaluated for two similarly sized watersheds in the tropical Andes via optimization techniques using geographic information system technology (GIS) and a matter-element analysis of 5-day biological oxygen demand (BOD5) and total suspended solids (TSS). This resulted in a flexible, objectively based design for a 1128-km2 watershed without prior water quality data (La Miel River), and a network redesign of a 1052-km2 watershed with historical water quality monitoring (Chinchiná River). Monitoring design for the undocumented basin incorporated mathematical expressions for physical, anthropological, and historical factors—and was based on clear objectives for diagnosis and intervention of water pollution. Network redesign identified network redundancy, which resulted in a 64% reduction in the number of water quality monitoring stations along the channel, and a 78% reduction of stations throughout the basin. Most tropical drainage basins throughout the world have little to no prior water quality data. But even in well-studied drainage basins like the Chinchiná River, which is among the most thoroughly studied basins in Colombia, redesign of historical and existing monitoring networks will become a standard tool to advance the restoration of polluted surface waters, not only in Colombia, but also throughout the world.  相似文献   
33.
This article presents basic data on the content of Cr, Fe, Ni, Cu, Zn, As, Cd, Sb, Hg, and Pb in staple foodstuffs and agriproduct grown in Russia (Astrakhan region and the town of Belovo) and Egypt (Helwan region). The dependence of the concentration of metals in agriproducts on the content and chemical form of existence in irrigation water and soils is indicated.  相似文献   
34.
    
The destruction/removal efficiency (DRE), and the ability to accurately measure it, is a function of the concentration of the chemical compound in the input waste, the incinerator design and operation, sampling methods, and the analytical procedures. All of these are interrelated. This paper discusses the basic DRE equation [DRE = WIn Wout)/Win × 100] and how it relates to some of the other destruction parameters. Some example data from the literature are presented. While PCBs have been used as the example, the equations and graphs are equally valid for some other hazardous compounds (POHCs), with the substitution of the 99.99% DRE requirement in lieu of the 99.9999% DRE for PCBs. The use of the relationships discussed in this paper should allow incinerator operators to more efficiently plan demonstration test burns which will adequately demonstrate the DRE.  相似文献   
35.
To investigate the suitability of three lichen species (Cetraria islandica, Evernia prunastri, and Ramalina farinacea) as transplants to trace-element air biomonitoring, they were exposed on substratum-free supports, from July 1996 until July 1997, in three European countries with different climates (Germany, Italy, Romania), at six sites with different types of air pollutants (two in each country). After 2, 4, 6, and 12 months of exposure, some portions of thallus were collected, prepared, and measured by instrumental neutron activation analysis (INAA) at the Institute of Physics and Nuclear Engineering in Bucharest and by energy dispersive X-ray fluorescence analysis (EDXRFA) at the University of Hohenheim in Stuttgart. Fifteen environmentally relevant elements: As, Br, Ca, Co, Cr, Cu, Fe, K, Mn, Ni, Pb, S, Sb, V, and Zn were determined. The analytical results were compared statistically. To study the distribution of the trace-elements between the lichens and the lichen throughfall water inside a virtual column, the throughfall water was collected under the lichen transplants during 6 and 12 months. The dried residues were analysed by INAA at Bucharest. The accumulating capacity for all investigated species is evident. For a comparative evaluation, the initial element contents, the "accumulation factors" relative to the bulk deposition, the interspecies "calibration factors", and the "retention efficiencies", defined as ratios of the lichen enrichment to the sum of this enrichment and the content in the lichen throughfall water, were considered. These criteria attest the best suitability for Evernia prunastri, followed by Ramalina farinacea and Cetraria islandica.  相似文献   
36.
    
Bioprocesses, such as biofiltration, are commonly used to treat industrial effluents containing volatile organic compounds (VOCs) at low concentrations. Nevertheless, the use of biofiltration for indoor air pollution (IAP) treatment requires adjustments depending on specific indoor environments. Therefore, this study focuses on the convenience of a hybrid biological process for IAP treatment. A biofiltration reactor using a green waste compost was combined with an adsorption column filled with activated carbon (AC). This system treated a toluene-micropolluted effluent (concentration between 17 and 52 µg/m3), exhibiting concentration peaks close to 733 µg/m3 for a few hours per day. High removal efficiency was obtained despite changes in toluene inlet load (from 4.2 × 10?3 to 0.20 g/m3/hr), which proves the hybrid system’s effectiveness. In fact, during unexpected concentration changes, the efficiency of the biofilter is greatly decreased, but the adsorption column maintains the high efficiency of the entire process (removal efficiency [RE] close to 100%). Moreover, the adsorption column after biofiltration is able to deal with the problem of the emission of particles and/or microorganisms from the biofilter.
ImplicationsIndoor air pollution is nowadays recognized as a major environmental and health issue. This original study investigates the performance of a hybrid biological process combining a biofilter and an adsorption column for removal of indoor VOCs, specifically toluene.  相似文献   
37.
38.
Investigations were undertaken to determine the adsorption-desorption, persistence and leaching of dithiopyr (S,S'-dimethyl 2-difluoromethyl-4-isobutyl-6-trifluoromethyl pyridine-3,5-dicarbothioate) in an alluvial soil under laboratory condition. The adsorption-desorption studies were carried out using batch equilibration technique. The mass balance studies showed that 83-97% of the pesticide was recovered during adsorption-desorption studies. The results revealed strong adsorption of dithiopyr in alluvial soil with Kd values ranging from 3.97-5.78 and Freundlich capacity factor (KF) value of 2.41. The strong adsorption was evident from the hysteresis effect observed during desorption. The hysteresis coefficients ranged from 0.17-0.40. The persistence studies were carried out at two concentrations (1.0 and 10.0 microg g(-1) level) under field capacity moisture and submerged condition by incubating the treated soil at 25 +/- 1 degrees C. In general, dithiopyr persisted beyond 90 days with half-life varying from 11.5-12.9 days under different conditions. The rate of application and moisture regimes had no overall effect on the persistence. The leaching studies carried out in packed column under saturated flow condition revealed that dithiopyr was highly immobile in alluvial soil. Only small amounts (0.02-0.04%) were recovered from leachate whereas major portion (99.9%) remained in top layer of the soil column. The data suggest that strong adsorption of dithiopyr will cause a greater persistence problem in the soil. However, the chances of its movement to ground water will be negligible due to its immobility.  相似文献   
39.
40.
Bioaccumulation and elimination of 14C-lindane in Enchytraeus albidus was studied in artificial OECD soil and a silty loam from an agricultural field in Central West Portugal. Results showed that enchytraeids were able to bioaccumulate the chemical with a kinetic pattern similar to that of earthworms: fast uptake within a few days and a biphasic elimination pattern. A 10 day period to study uptake was sufficient, but a few more days were probably necessary for elimination. Bioaccumulation was influenced by soil type. The authors suggest that higher organic matter (OM) content and also the higher content on sand particles in the OECD soil may have led to a faster elimination: hydrophobic chemicals tend to adsorb to OM being in this way less bioavailable and therefore less bioaccumulated having bioaccumulation factor value around 6 while in natural soil is 10; the sand could act as abrasive particles (helpers) in the elimination process leading to an elimination of 90% of the chemical in two days while in natural soil 67% was eliminated in the same period of time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号