首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   187篇
  免费   2篇
  国内免费   2篇
安全科学   1篇
废物处理   5篇
环保管理   22篇
综合类   7篇
基础理论   40篇
环境理论   2篇
污染及防治   70篇
评价与监测   36篇
社会与环境   7篇
灾害及防治   1篇
  2023年   3篇
  2022年   5篇
  2021年   14篇
  2020年   4篇
  2019年   4篇
  2018年   6篇
  2017年   9篇
  2016年   7篇
  2015年   4篇
  2014年   10篇
  2013年   28篇
  2012年   8篇
  2011年   8篇
  2010年   12篇
  2009年   8篇
  2008年   11篇
  2007年   18篇
  2006年   5篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   4篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1996年   1篇
  1994年   5篇
  1991年   1篇
  1988年   1篇
  1982年   1篇
  1978年   1篇
  1976年   1篇
  1966年   1篇
  1959年   1篇
排序方式: 共有191条查询结果,搜索用时 156 毫秒
41.
Anopheles philippinensis-nivipes complex mosquitoes, captured in outdoor human landing catches and light traps in human dwellings from four different sites in Assam state and adjoining areas, were examined (n=1670) for the presence of circumsporozoite antigen (CSA) through enzyme linked immunosorbent assays (ELISA), using species specific capture monoclonal antibodies, of Plasmodium falciparum and two Plasmodium vivax polymorphs (Pv 210 and VK 247). In ELISA, 28 pools were found positive for CSA that accounted for minimum sporozoite rate of 1.7% (95% CI 1.11-2.41). Twenty five percent (7/28) of the positive pools were reactive for P. falciparum and between the two polymorphs of P. vivax, VK 247 was predominant with 77% (20/26) of all P. vivax positive pools. Results were suggestive of most likely involvement of Anopheles philippinensis-nivipes complex mosquitoes in malaria transmission in north-east India.  相似文献   
42.
Larval ecology of Anopheles dirus, the main vector of forest malaria in north-eastern region of India, was studied in relation to physico-chemical characteristics of its breeding habitats in a rain forest area of Assam, India. Shady stream side pools, positive for the breeding of An. dirus, had significantly higher amounts of total hardness (P < 0.024) in comparison to negative pools of similar type. When compared with An. dirus negative breeding habitats, in hot-wet as well as in cool-dry seasons, An. dirus positive shady ground pools showed higher mean values of total alkalinity, hardness and chloride content, whereas lower pH, dissolved oxygen along with higher total alkalinity and hardness were possessed by An. dirus positive stream side pools. Specificity of breeding habitats of An. dirus in relation to its ecology has been discussed.  相似文献   
43.
In this study, we systematically document the link between dust episodes and local scale regional aerosol optical properties over Jaipur located in the vicinity of Thar Desert in the northwestern state of Rajasthan. The seasonal variation of AOT500 nm (aerosol optical thickness) shows high values (0.51?±?0.18) during pre-monsoon (dust dominant) season while low values (0.36?±?0.14) are exhibited during winter. The Ångström wavelength exponent has been found to exhibit low value (<0.25) indicating relative dominance of coarse-mode particles during pre-monsoon season. The AOT increased from 0.36 (Aprilmean) to 0.575 (May–Junemean). Consequently, volume concentration range increases from April through May–June followed by a sharp decline in July during the first active phase of the monsoon. Significantly high dust storms were observed over Jaipur as indicated by high values of single scattering albedo (SSA440 nm?=?0.89, SSA675 nm?=?0.95, SSA870 nm?=?0.97, SSA1,020 nm?=?0.976) than the previously reported values over IGP region sites. The larger SSA values (more scattering aerosol), especially at longer wavelengths, is due to the abundant dust loading, and is attributed to the measurement site’s proximity to the Thar Desert. The mean and standard deviation in SSA and asymmetry parameter during pre-monsoon season over Jaipur is 0.938?±?0.023 and 0.712?±?0.017 at 675 nm wavelength, respectively. Back-trajectory air mass simulations suggest Thar Desert in northwestern India as the primary source of high aerosols dust loading over Jaipur region as well as contribution by long-range transport from the Arabian Peninsula and Middle East gulf regions, during pre-monsoon season.  相似文献   
44.
ABSTRACT

The Nested Grid Model (NGM) is a primitive-equation meteorological model that is routinely exercised over North America for forecasting purposes by the National Meteorological Center. While prognostic meteorological models are being increasingly used to drive air quality models, their use in conducting annual simulations requires significant resources. NGM estimates of wind fields and other meteorological variables provide an attractive alternative since they are typically archived and readily available for an entire year. Preliminary evaluation of NGM winds during the summer of 1992 for application to the region surrounding the Grand Canyon National Park showed serious shortcomings. The NGM winds along the borders between California, Arizona and Mexico tend to be northwesterly with a speed of about 6 m/sec, while the observed flow is predominantly southerly at about 2-5 m/sec. The mesoscale effect of a thermal low pressure area over the highly heated Southern California and western Arizona deserts does not appear to be represented by the NGM because of its coarse resolution and the use of sparse observations in that region. Tracer simulations and statistical evaluation against special high resolution observations of winds in the southwest United States clearly demonstrate the northwest bias in NGM winds and its adverse effect on predictions of an air quality model. The “enhanced” NGM winds, in which selected wind observations are incorporated in the NGM winds using a diagnostic meteorological model provide additional confirmation on the primary cause of the northwest bias. This study has demonstrated that in situations where limited resources prevent the use of prognostic meteorological models, previously archived coarse resolution wind fields in which additional observations are incorporated to correct known biases provide an attractive option.  相似文献   
45.
This study proposes a practical method to estimate elemental composition and distribution in order to attribute source and quantify impacts of aerosol particles at an urban region in Kolkata, India. Twelve-hour total particulates were collected in winter (2005–2006) and analyzed by energy-dispersive X-ray fluorescence technique to determine multi-elemental composition, especially trace metals. The aerosols consist of various elements including K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Se, and Pb which exhibit significant concentration at various sites (p?<?0.05). The concentration of different metallic elements were found in the order of Zn ?> ?Pb ?> ?Ni ?> ?Cu ?> ?Cr ?>? Co. Statistical multivariate analysis and correlation matrix analyses were performed for factor identification and consequent source apportionment. Contour profiles demonstrate spatial variation of elemental compositions indicating possible source contribution along with meteorological influences. Spatial differences were clearly most significant for Zn, Ni, Pb, and Cu reflecting the importance of anthropogenic inputs, primarily from automobile sources.  相似文献   
46.
47.
Although Small Hydropower Projects (SHPs) are encouraged as sources of clean and green energy, there is a paucity of research examining their socio-ecological impacts. We assessed the perceived socio-ecological impacts of 4 SHPs within the Western Ghats in India by conducting semi-structured interviews with local respondents. Primary interview data were sequentially validated with secondary data, and respondent perceptions were subsequently compared against the expected baseline of assured impacts. We evaluated the level of awareness about SHPs, their perceived socio-economic impacts, influence on resource access and impacts on human–elephant interactions. The general level of awareness about SHPs was low, and assurances of local electricity and employment generation remained largely unfulfilled. Additionally most respondents faced numerous unanticipated adverse impacts. We found a strong relationship between SHP construction and increasing levels of human–elephant conflict. Based on the disparity between assured and actual social impacts, we suggest that policies regarding SHPs be suitably revised.  相似文献   
48.
The relationship between emission reductions and changes in ozone can be studied using photochemical grid models. These models are updated with new information as it becomes available. The primary objective of this study was to update the previous Collet et al. studies by using the most up-to-date (at the time the study was done) modeling emission tools, inventories, and meteorology available to conduct ozone source attribution and sensitivity studies. Results show future-year, 2030, design values for 8-hr ozone concentrations were lower than base-year values, 2011. The ozone source attribution results for selected cities showed that boundary conditions were the dominant contributors to ozone concentrations at the western U.S. locations, and were important for many of the eastern U.S. locations. Point sources were generally more important in the eastern United States than in the western United States. The contributions of on-road mobile emissions were less than 5 ppb at a majority of the cities selected for analysis. The higher-order decoupled direct method (HDDM) results showed that in most of the locations selected for analysis, NOx emission reductions were more effective than VOC emission reductions in reducing ozone levels. The source attribution results from this study provide useful information on the important source categories and provide some initial guidance on future emission reduction strategies.

Implications: The relationship between emission reductions and changes in ozone can be studied using photochemical grid models, which are updated with new available information. This study was to update the previous Collet et al. studies by using the most current, at the time the study was done, models and inventory to conduct ozone source attribution and sensitivity studies. The source attribution results from this study provide useful information on the important source categories and provide some initial guidance on future emission reduction strategies.  相似文献   

49.
This paper introduces a methodology for estimating gridded fields of total and speciated fine particulate matter (PM2.5) concentrations for time periods and regions not covered by observational data. The methodology is based on performing long-term regional scale meteorological and air quality simulations and then integrating these simulations with available observational data. To illustrate this methodology, we present an application in which year-round simulations with a meteorological model (the National Center for Atmospheric Research/Penn State Mesoscale Model, hereafter referred to as MM5) and a photochemical air quality model (the Community Multiscale Air Quality Model, hereafter referred to as CMAQ) have been performed over the northeastern United States for 1988–2005. Model evaluation results for total PM2.5 mass and individual species for the time period from 2000 to 2005 show that model performance varies by species, season, and location. Therefore, an approach is developed to adjust CMAQ output with factors based on these three variables. The adjusted model values for total PM2.5 mass for 2000–2005 are compared against independent measurements not utilized for the adjustment approach. This comparison reveals that the adjusted model values have a lower root mean square error (RMSE) and higher correlation coefficients than the original model values. Furthermore, the PM2.5 estimates from these adjusted model values are compared against an alternate method for estimating historic PM2.5 values that is based on PM2.5/PM10 ratios calculated at co-located monitors. Results reveal that both methods yield estimates of historic PM2.5 mass that are broadly consistent; however, the adjusted CMAQ values provide greater spatial coverage and information for PM2.5 species in addition to total PM2.5 mass. Finally, strengths and limitations of the proposed approach are discussed in the context of potential uses of this method.  相似文献   
50.
PM(2.5) nitrate [Formula: see text] and sulfate ([Formula: see text]) were measured continuously with R&P8400N and R&P8400S instruments, respectively, and compared with filter-based measurements at the Fresno Supersite from October, 2000 through December, 2005. [Formula: see text] concentrations were higher in winter than summer with a long-term decreasing trend. Correlations between 24-h average continuous and filter-based [Formula: see text] were greater than 0.96 in 4 out of 5 years. Continuous [Formula: see text] was generally lower than filter-based [Formula: see text] although the difference decreased over time, from -52% in 2001 to +13% in 2005. These differences were similar in winter (-23%) and summer (-19%) while the corresponding differences between ambient and instrument temperature were -12 and 0.7 degrees C, respectively. Neither seasonal nor long-term trends in [Formula: see text] can be explained by variations in ambient temperature, the difference between ambient and instrument temperature, or changes in aerosol chemical composition. There were no seasonal or long-term trends in [Formula: see text] concentrations, partially due to low concentrations observed in Fresno. Long-term variability in the performance of R&P8400 [Formula: see text] and [Formula: see text] instruments suggest that collocation with filter measurements is needed for long-term measurements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号