首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39802篇
  免费   434篇
  国内免费   339篇
安全科学   1291篇
废物处理   1700篇
环保管理   5433篇
综合类   7133篇
基础理论   10113篇
环境理论   14篇
污染及防治   9829篇
评价与监测   2535篇
社会与环境   2293篇
灾害及防治   234篇
  2022年   307篇
  2021年   368篇
  2019年   299篇
  2018年   529篇
  2017年   546篇
  2016年   850篇
  2015年   657篇
  2014年   987篇
  2013年   3211篇
  2012年   1228篇
  2011年   1671篇
  2010年   1327篇
  2009年   1438篇
  2008年   1728篇
  2007年   1679篇
  2006年   1528篇
  2005年   1311篇
  2004年   1294篇
  2003年   1272篇
  2002年   1172篇
  2001年   1428篇
  2000年   1004篇
  1999年   653篇
  1998年   473篇
  1997年   488篇
  1996年   535篇
  1995年   592篇
  1994年   543篇
  1993年   484篇
  1992年   508篇
  1991年   497篇
  1990年   480篇
  1989年   475篇
  1988年   424篇
  1987年   363篇
  1986年   359篇
  1985年   375篇
  1984年   384篇
  1983年   373篇
  1982年   394篇
  1981年   351篇
  1980年   295篇
  1979年   301篇
  1978年   278篇
  1977年   239篇
  1976年   234篇
  1975年   231篇
  1974年   247篇
  1973年   270篇
  1972年   244篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
The biodegradability of oxidized starch and inulin has been studied in relation to the degree of periodate oxidation to dialdehyde derivatives, by measuring oxygen consumption and mineralization to carbon dioxide. A higher degree of oxidation of dialdehyde starch and dialdchyde inulin results in a lower rate at which the polymers are biodegraded. It is demonstrated that the biodegradation rate of dialdehyde inulin derivatives decreases more than that of equivalent starch derivatives. The differences in biodegradation behavior between dialdehyde starch and dialdehyde inulin, resulting from comparable modifications, are discussed in terms of conformational structure.  相似文献   
942.
Hot Spots of Perforated Forest in the Eastern United States   总被引:1,自引:0,他引:1  
National assessments of forest fragmentation satisfy international biodiversity conventions, but they do not identify specific places where ecological impacts are likely. In this article, we identify geographic concentrations (hot spots) of forest located near holes in otherwise intact forest canopies (perforated forest) in the eastern United States, and we describe the proximate causes in terms of the nonforest land-cover types contained in those hot spots. Perforated forest, defined as a 0.09-ha unit of forest that is located at the center of a 7.29-ha neighborhood containing 60–99% forest with relatively low connectivity, was mapped over the eastern United States by using land-cover maps with roads superimposed. Statistically significant (P < 0.001) hot spots of high perforation rate (perforated area per unit area of forest) were then located by using a spatial scan statistic. Hot spots were widely distributed and covered 20.4% of the total area of the 10 ecological provinces examined, but 50.1% of the total hot-spot area was concentrated in only two provinces. In the central part of the study area, more than 90% of the forest edge in hot spots was attributed to anthropogenic land-cover types, whereas in the northern and southern parts it was more often associated with seminatural land cover such as herbaceous wetlands.  相似文献   
943.
Monitoring nitrate N (NO3-N) leaching is important in order to judge the effect that agricultural practices have on the quality of ground water and surface water. Measuring drain discharge rates and NO3-N concentrations circumvents the problem of spatial variability encountered by other methods used to quantify NO3-N leaching in the field. A new flow-proportional drainage water sampling method for submerged drains has been developed to monitor NO3-N leaching. Both low and high discharge rates can be measured accurately, and are automatically compensated for fluctuations in ditch-water levels. The total amount of NO3-N leached was 10.6 kg N ha(-1) for a tile-drained silt-loam soil during the 114-d monitoring period. The NO3-N concentrations fluctuated between 5 mg L(-1) at deep ground water levels and 15 mg L(-1) at shallow levels, due to variations in water flow. A flow-proportional drainage water sampling method is required to measure NO3-N leaching accurately under these conditions. Errors of up to 43% may occur when NO3-N concentrations in the drainage water are only measured at intervals of 30 d and when the precipitation excess is used to estimate cumulative NO3-N leaching. Measurements of NO3-N concentrations in ground water cannot be used to accurately estimate NO3-N leaching in drained soils.  相似文献   
944.
By 19%, standard remediation techniques had significantly reduced the concentration of nitrate nitrogen (NO3- -N) in local ground water at the site of a 1989 anhydrous ammonia spill, but NO3- -N concentrations in portions of the site still exceeded the public drinking water standard. Our objective was to determine whether local soil and ground water quality could be improved with alfalfa (Medicago sativa L.). A 3-yr study was conducted in replicated plots (24 by 30 m) located hydrologically upgradient of the ground water under the spill site. Three alfalfa entries ['Agate', Ineffective Agate (a non-N2-fixing elite germplasm similar to Agate), and MWNC-4 (an experimental germplasm)] were seeded in the spring of 1996. Corn (Zea mays L.) or wheat (Triticum aestivum L.) was seeded adjacent to the alfalfa each year. Crops were irrigated with N-containing ground water to meet water demand. During the 3-yr period, about 540 kg of inorganic N was removed from the aquifer through irrigation of 4.9 million L water. Cumulative N removal from the site over 3 yr was 972 kg N ha(-1) in Ineffective Agate alfalfa hay, compared with 287 kg N ha(-1) for the annual cereal grain. Soil solution NO3- concentrations were reduced to low and stable levels by alfalfa, but were more variable under the annual crops. Ground water quality improved, as evidenced by irrigation water N concentration. We do not know how much N was removed by the N2-fixing alfalfas, but it appears that either fixing or non-N2-fixing alfalfa will effectively remove inorganic N from N-affected sites.  相似文献   
945.
ABSTRACT: Water from the Missouri River Basin is used for multiple purposes. The climatic change of doubling the atmospheric carbon dioxide may produce dramatic water yield changes across the basin. Estimated changes in basin water yield from doubled CO2 climate were simulated using a Regional Climate Model (RegCM) and a physically based rainfall‐runoff model. RegCM output from a five‐year, equilibrium climate simulation at twice present CO2 levels was compared to a similar present‐day climate run to extract monthly changes in meteorologic variables needed by the hydrologic model. These changes, simulated on a 50‐km grid, were matched at a commensurate scale to the 310 subbasin in the rainfall‐runoff model climate change impact analysis. The Soil and Water Assessment Tool (SWAT) rainfall‐runoff model was used in this study. The climate changes were applied to the 1965 to 1989 historic period. Overall water yield at the mouth of the Basin decreased by 10 to 20 percent during spring and summer months, but increased during fall and winter. Yields generally decreased in the southern portions of the basin but increased in the northern reaches. Northern subbasin yields increased up to 80 percent: equivalent to 1.3 cm of runoff on an annual basis.  相似文献   
946.
The legacy of mining activities has typically been land ‘returned to wildlife’, or, at some sites, degraded to such an extent that it is unsuitable for any alternate use. Progress towards sustainability is made when value is added in terms of the ecological, social and economic well‐being of the community. In keeping with the principles of sustainable development, the innovative use of flooded open pits and tailings impoundments as commercial, recreational or ornamental fish farms should be considered in some locations, as it could make a significant contribution to the social equity, economic vitality and environmental integrity of mining communities. This article highlights the growing significance of aquaculture and explores the benefits and barriers to transforming flooded pits and impoundments into aquaculture operations. Among other benefits, aquaculture may provide a much‐needed source of revenue, employment and, in some cases, food to communities impacted by mine closure. Further, aquaculture in a controlled closed environment may be more acceptable to critics of fish farming who are concerned about fish escapes and viral transmissions to wild populations. Despite the potential benefits, aquaculture in flooded pits and impoundments is not without its complications — it requires a site‐specific design approach that must consider issues ranging from metals uptake by fish, to the long‐term viability of the aquatic system as fish habitat, to the overall contribution of aquaculture to sustainability.  相似文献   
947.
Abstract: Few studies exist that evaluate or apply pesticide transport models based on measured parent and metabolite concentrations in fields with subsurface drainage. Furthermore, recent research suggests pesticide transport through exceedingly efficient direct connections, which occur when macropores are hydrologically connected to subsurface drains, but this connectivity has been simulated at only one field site in Allen County, Indiana. This research evaluates the Root Zone Water Quality Model (RZWQM) in simulating the transport of a parent compound and its metabolite at two subsurface drained field sites. Previous research used one of the field sites to test the original modification of the RZWQM to simulate directly connected macropores for bromide and the parent compound, but not for the metabolite. This research will evaluate RZWQM for parent/metabolite transformation and transport at this first field site, along with evaluating the model at an additional field site to evaluate whether the parameters for direct connectivity are transferable and whether model performance is consistent for the two field sites with unique soil, hydrologic, and environmental conditions. Isoxaflutole, the active ingredient in BALANCE® herbicide, was applied to both fields. Isoxaflutole rapidly degrades into a metabolite (RPA 202248). This research used calibrated RZWQM models for each field based on observed subsurface drain flow and/or edge of field conservative tracer concentrations in subsurface flow. The calibrated models for both field sites required a portion (approximately 2% but this fraction may require calibration) of the available water and chemical in macropore flow to be routed directly into the subsurface drains to simulate peak concentrations in edge of field subsurface drain flow shortly after chemical applications. Confirming the results from the first field site, the existing modification for directly connected macropores continually failed to predict pesticide concentrations on the recession limbs of drainage hydrographs, suggesting that the current strategy only partially accounts for direct connectivity. Thirty‐year distributions of annual mass (drainage) loss of parent and metabolite in terms of percent of isoxaflutole applied suggested annual simulated percent losses of parent and metabolite (3.04 and 1.31%) no greater in drainage than losses in runoff on nondrained fields as reported in the literature.  相似文献   
948.
A full scale field study has been carried out in order to test and evaluate the use of slags from high-alloy steel production as the construction materials for a final cover of an old municipal landfill. Five test areas were built using different slag mixtures within the barrier layer (liner). The cover consisted of a foundation layer, a liner with a thickness of 0.7 m, a drainage layer of 0.3 m, a protection layer of 1.5 m and a vegetation layer of 0.25 m. The infiltration varied depending on the cover design used, mainly the liner recipe but also over time and was related to seasons and precipitation intensity. The test areas with liners composed of 50% electric arc furnace (EAF) slag and 50% cementitious ladle slag (LS) on a weight basis and with a proper consistence of the protection layer were found to meet the Swedish infiltration criteria of ?50 l (m2 a)?1 for final covers for landfills for non-hazardous waste: the cumulative infiltration rates to date were 44, 19 and 0.4 l (m2 a)?1 for A1, A4 and A5, respectively. Compared to the precipitation, the portion of leachate was always lower after the summer despite high precipitation from June to August. The main reason for this is evapotranspiration but also the fact that the time delay in the leachate formation following a precipitation event has a stronger effect during the shorter summer sampling periods than the long winter periods. Conventional techniques and equipment can be used but close cooperation between all involved partners is crucial in order to achieve the required performance of the cover. This includes planning, method and equipment testing and quality assurance.  相似文献   
949.
ABSTRACT: The U.S. Geological Survey (USGS) has compiled a national retrospective data set of analyses of volatile organic compounds (VOCs) in ground water of the United States. The data are from Federal, State, and local nonpoint‐source monitoring programs, collected between 1985–95. This data set is being used to augment data collected by the USGS National Water‐Quality Assessment (NAWQA) Program to ascertain the occurrence of VOCs in ground water nationwide. Eleven attributes of the retrospective data set were evaluated to determine the suitability of the data to augment NAWQA data in answering occurrence questions of varying complexity. These 11 attributes are the VOC analyte list and the associated reporting levels for each VOC, well type, well‐casing material, type of openings in the interval (screened interval or open hole), well depth, depth to the top and bottom of the open interval(s), depth to water level in the well, aquifer type (confined or unconfined), and aquifer lithology. VOCs frequently analyzed included solvents, industrial reagents, and refrigerants, but other VOCs of current interest were not frequently analyzed. About 70 percent of the sampled wells have the type of well documented in the data set, and about 74 percent have well depth documented. However, the data set generally lacks documentation of other characteristics, such as well‐casing material, information about the screened or open interval(s), depth to water level in the well, and aquifer type and lithology. For example, only about 20 percent of the wells include information on depth to water level in the well and only about 14 percent of the wells include information about aquifer type. The three most important enhancements to VOC data collected in nonpoint‐source monitoring programs for use in a national assessment of VOC occurrence in ground water would be an expanded VOC analyte list, recording the reporting level for each analyte for every analysis, and recording key ancillary information about each well. These enhancements would greatly increase the usefulness of VOC data in addressing complex occurrence questions, such as those that seek to explain the reasons for VOC occurrence and nonoccurrence in ground water of the United States.  相似文献   
950.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号