首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   3篇
  国内免费   1篇
废物处理   6篇
环保管理   20篇
综合类   7篇
基础理论   38篇
污染及防治   32篇
评价与监测   7篇
社会与环境   4篇
  2023年   1篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2013年   13篇
  2012年   4篇
  2011年   13篇
  2010年   7篇
  2009年   6篇
  2008年   6篇
  2007年   6篇
  2006年   6篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2001年   2篇
  2000年   5篇
  1998年   3篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1992年   4篇
  1990年   1篇
  1988年   1篇
  1984年   4篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有114条查询结果,搜索用时 0 毫秒
61.
This paper documents the concentration of total arsenic and individual arsenic species in four soft-bottom benthic polychaetes (Perenereis cultifera, Ganganereis sootai, Lumbrinereis notocirrata and Dendronereis arborifera) along with host sediments from Sundarban mangrove wetland, India. An additional six sites were considered exclusively for surface sediments for this purpose. Polychaetes were collected along with the host sediments and measured for their total arsenic content using inductively coupled plasma mass spectrometry. Arsenic concentrations in polychaete body tissues varied greatly, suggesting species-specific characteristics and inherent peculiarities in arsenic metabolism. Arsenic was generally present in polychaetes as arsenate (AsV ranges from 0.16 to 0.50 mg kg?1) or arsenite (AsIII ranges from 0.10 to 0.41 mg kg?1) (30–53 % as inorganic As) and dimethylarsinic acid (DMAV <1–25 %). Arsenobetaine (AB < 16 %), and PO4-arsenoriboside (8–48 %) were also detected as minor constituents, whilst monomethylarsonic acid (MAV) was not detected in any of the polychaetes. The highest total As (14.7 mg kg?1 dry wt) was observed in the polychaete D. arborifera collected from the vicinity of a sewage outfall in which the majority of As was present as an uncharacterised compound (10.3 mg kg?1 dry wt) eluted prior to AB. Host sediments ranged from 2.5 to 10.4 mg kg?1 of total As. This work supports the importance of speciation analysis of As, because of the ubiquitous occurrence of this metalloid in the environment, and its variable toxicity depending on chemical form. It is also the first work to report the composition of As species in polychaetes from the Indian Sundarban wetlands.  相似文献   
62.
Insights into declines in ecosystem resilience and their causes and effects can inform preemptive action to avoid ecosystem collapse and loss of biodiversity, ecosystem services, and human well-being. Empirical studies of ecosystem collapse are rare and hampered by ecosystem complexity, nonlinear and lagged responses, and interactions across scales. We investigated how an anthropogenic stressor could diminish ecosystem resilience to a recurring perturbation by altering a critical ecosystem driver. We studied groundwater-dependent, peat-accumulating, fire-prone wetlands known as upland swamps in southeastern Australia. We hypothesized that underground mining (stressor) reduces resilience of these wetlands to landscape fires (perturbation) by diminishing groundwater, a key ecosystem driver. We monitored soil moisture as an indicator of ecosystem resilience during and after underground mining. After landscape fire, we compared responses of multiple state variables representing ecosystem structure, composition, and function in swamps within the mining footprint with unmined reference swamps. Soil moisture declined without recovery in swamps with mine subsidence (i.e., undermined), but was maintained in reference swamps over 8 years (effect size 1.8). Relative to burned reference swamps, burned undermined swamps showed greater loss of peat via substrate combustion; reduced cover, height, and biomass of regenerating vegetation; reduced postfire plant species richness and abundance; altered plant species composition; increased mortality rates of woody plants; reduced postfire seedling recruitment; and extirpation of a hydrophilic animal. Undermined swamps therefore showed strong symptoms of postfire ecosystem collapse, whereas reference swamps regenerated vigorously. We found that an anthropogenic stressor diminished the resilience of an ecosystem to recurring perturbations, predisposing it to collapse. Avoidance of ecosystem collapse hinges on early diagnosis of mechanisms and preventative risk reduction. It may be possible to delay or ameliorate symptoms of collapse or to restore resilience, but the latter appears unlikely in our study system due to fundamental alteration of a critical ecosystem driver. Efectos de las interacciones entre los estresantes antropogénicos y las perturbaciones recurrentes sobre la resiliencia y el colapso de los ecosistemas  相似文献   
63.
Environmental pressure to reduce nutrient losses from agricultural fields has increased in recent years. To abate this nutrient loss to the environment, better management practices and new technologies need to be developed. Thus, research was conducted to evaluate if subsurface banding poultry litter (PL) would reduce nitrogen (N) and phosphorus (P) loss in surface water runoff using a four-row prototype implement. Rainfall simulations were conducted to create a 40-min runoff event in an established bermudagrass (Cynodon dactylon L.) pasture on soil types common to the Coastal Plain and Piedmont regions. The Coastal Plain soil type was a Marvyn loamy sand (fine-loamy, kaolinitic, thermic Typic Kanhapludults) and the Piedmont soil type was a Hard Labor loamy sand (fine, kaolinitic, thermic Oxyaquic Kanhapludults). Treatments consisted of surface- and subsurface-applied PL at a rate of 9 Mg ha(-1), surface broadcast-applied commercial fertilizer (CF; urea and triple superphosphate blend) at the equivalent N (330 kg N ha(-1)) and P (315 kg N ha(-1)) content of PL, and a nonfertilized control. The greatest loss for inorganic N, total N, dissolved reactive P (DRP), and total P occurred with the surface broadcast treatments, with CF contributing to the greatest loss. Nutrient losses from the subsurface banded treatment reduced N and P in surface water runoff to levels of the control. Subsurface banding of PL reduced concentrations of inorganic N 91%, total N 90%, DRP 86%, and total P 86% in runoff water compared with surface broadcasted PL. These results show that subsurface band-applied PL can greatly reduce the impact of N and P loss to the environment compared with conventional surface-applied PL and CF practices.  相似文献   
64.
The introduction of earthworms into soils contaminated with metals and metalloids has been suggested to aid restoration practices. Eisenia veneta (epigeic), Lumbricus terrestris (anecic) and Allolobophora chlorotica (endogeic) earthworms were cultivated in columns containing 900 g soil with 1130, 345, 113 and 131 mg kg(-1) of As, Cu, Pb and Zn, respectively, for up to 112 days, in parallel with earthworm-free columns. Leachate was produced by pouring water on the soil surface to saturate the soil and generate downflow. Ryegrass was grown on the top of columns to assess metal uptake into biota. Different ecological groups affected metals in the same way by increasing concentrations and free ion activities in leachate, but anecic L. terrestris had the greatest effect by increasing leachate concentrations of As by 267%, Cu by 393%, Pb by 190%, and Zn by 429% compared to earthworm-free columns. Ryegrass grown in earthworm-bearing soil accumulated more metal and the soil microbial community exhibited greater stress. Results are consistent with earthworm enhanced degradation of organic matter leading to release of organically bound elements. The degradation of organic matter also releases organic acids which decrease the soil pH. The earthworms do not appear to carry out a unique process, but increase the rate of a process that is already occurring. The impact of earthworms on metal mobility and availability should therefore be considered when inoculating earthworms into contaminated soils as new pathways to receptors may be created or the flow of metals and metalloids to receptors may be elevated.  相似文献   
65.
Emissions from feedlot operations are known to vary by environmental conditions and few if any techniques or models exist to predict the variability of odor emission rates from feedlots. The purpose of this paper is to outline and summarize unpublished reports that are the result of a collective effort to develop industry-specific odor impact criteria for Australian feedlots. This effort used over 250 olfactometry samples collected with a wind tunnel and past research to develop emission models for pads, sediment basins, holding ponds, and manure storage areas over a range of environmental conditions and tested using dynamic olfactometry. A process was developed to integrate these emission models into odor dispersion modeling for the development of impact criteria. The approach used a feedlot hydrology model to derive daily feedlot pad moisture, temperature, and thickness. A submodel converted these daily data to hourly data. A feedlot pad emissions model was developed that predicts feedlot pad emissions as a function of temperature, moisture content, and pad depth. Emissions from sediment basins and holding ponds were predicted using a basin emissions model as a function of days since rain, inflow volume, inflow ratio (pond volume), and temperature. This is the first attempt to model all odor source emissions from a feedlot as variable hourly emissions on the basis of climate, management, and site-specific conditions. Results from the holding pond, sediment basin, and manure storage emission models performed well, but additional work on the pad emissions model may be warranted. This methodology mimics the variable odor emissions and odor impact expected from feedlots due to climate and management effects. The main outcome of the work is the recognition that an industry-specific odor impact criterion must be expressed in terms of all of the components of the assessment methodology.  相似文献   
66.
A field method is reported for the speciation of arsenic in water samples that is simple, rapid, safe to use beyond laboratory environments, and cost effective. The method utilises solid-phase extraction cartridges (SPE) in series for selective retention of arsenic species, followed by elution and measurement of eluted fractions by inductively coupled plasma mass spectrometry (ICP-MS) for “total” arsenic. The method is suitable for on-site separation and preservation of arsenic species from water. Mean percentage accuracies (n = 25) for synthetic solutions of arsenite (AsIII), arsenate (AsV), monomethylarsonic acid (MA), and dimethylarsinic acid (DMA) containing 10 μg l−1 As, were 98, 101, 94, and 105%, respectively. Data are presented to demonstrate the effect of pH and competing anions on the retention of the arsenic species. The cartridges were tested in the UK and Argentina at sites where arsenic was known to be present in surface and groundwaters, respectively, at elevated concentrations and under challenging matrix conditions. In Argentinean groundwater, 4–20% of speciated arsenic was present as MA and 20–73% as AsIII. In UK surface waters, speciated arsenic was measured as 7–49% MA and 12–42% DMA. Comparative data from the field method using SPE cartridges and the laboratory method using liquid chromatography coupled to ICP-MS for all water samples provided a correlation of greater than 0.999 for AsIII and DMA, 0.991 for MA, and 0.982 for AsV (P < 0.01).  相似文献   
67.
The degradability of several degradable polymers was examined using three types of degradation environments. These include exposure in a laboratory-scale composting test system containing material representative of the organic fraction of municipal solid waste (MSW), exposure in a thermal hydrolytic environment consisting of water at 60‡C, and exposure in a thermal-oxidative, dry oven environment of 60‡C. The results of the investigation clearly indicate that, in addition to chemical and biological activity which can lead to polymer degradation, physical restructuring and reorganization of the macromolecular structure may also occur at temperatures typically found in a compost environment, resulting in changes in the mechanical properties of the polymer films. In the case of the polyethylene-modified polymers evaluated in this study, all behaved similarly, but differently from the other polymer types. The polyethylene-based films appeared to be susceptible to oxidative degradation and should degrade in a composting environment providing that there is sufficient air in contact with the film for a sufficient period of time. However, when exposed in a laboratory composter, it appears that although ideal temperature-time curves may be obtained, the test time period was insufficient in comparison to the induction period required to achieve the desired thermal oxidative degradation. Issued as NRCC No. 37620.  相似文献   
68.
Catalyzed hydrogen peroxide was applied to contaminated soil at an equipment storage yard in Reno, Nevada, that had also been used as a dump for motor oil and diesel fuel for twenty years. The site is only a quarter mile from the Truckee River—a principal source of Reno's drinking water. This article details hydrogen peroxide's advantages, disadvantages, costs, and treatment for reducing to below the 100 mg/kg Nevada action level the petroleum hydrocarbons in the yard's arid soil, which is characterized by low organic carbon content and low manganese oxide content.  相似文献   
69.
Uptake and depuration of (131)I into winkles through consumption of the diatom Skeletonema costatum is described. The work follows on from previous studies that investigated the uptake of iodine into winkles from seawater and seaweed. Incorporation of (131)I in S. costatum from labelled seawater followed linear first-order kinetics with an uptake half-time of 0.40 days. Iodine uptake in winkles from labelled S. costatum also followed linear first-order kinetics, with a calculated equilibrium concentration (C(infinity)) of 42Bqkg(-1) and a transfer factor (TF) of 1.1x10(-4) with respect to labelled diatom food. This TF is lower than that observed for uptake of (131)I in winkles from labelled seaweed. For the depuration stage, a biphasic sequence with biological half-lives of 1.3 and 255 days was determined. The first phase is biokinetically important, given that winkles can lose two-thirds of their activity during that period. This study shows that, whilst winkles can obtain radioactive iodine from phytoplankton consumption, they do not retain the majority of that activity for very long. Hence, compared with other exposure pathways, such as uptake from seawater and macroalgae, incorporation from phytoplankton is a relatively minor exposure route.  相似文献   
70.
Like many resources in the Chesapeake Bay region of the U.S., many waterbird nesting populations have suffered over the past three to four decades. In this study, historic information for the entire Bay and recent results from the Tangier Sound region were evaluated to illustrate patterns of island erosion and habitat loss for 19 breeding species of waterbirds. Aerial imagery and field data collected in the nesting season were the primary sources of data. From 1993/1994 to 2007/2008, a group of 15 islands in Tangier Sound, Virginia were reduced by 21% in area, as most of their small dunes and associated vegetation and forest cover were lost to increased washovers. Concurrently, nesting American black ducks (Anas rubripes) declined by 66% , wading birds (herons-egrets) by 51%, gulls by 72%, common terns (Sterna hirundo) by 96% and black skimmers (Rynchops niger) by about 70% in this complex. The declines noted at the larger Bay-wide scale suggest that this study area maybe symptomatic of a systemic limitation of nesting habitat for these species. The island losses noted in the Chesapeake have also been noted in other Atlantic U.S. coastal states. Stabilization and/or restoration of at least some of the rapidly eroding islands at key coastal areas are critical to help sustain waterbird communities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号