Urban stormwater runoff is being recognized as a substantial source of pollutants to receiving waters. A number of investigators have found significant levels of metals in runoff from urban areas, especially in highway runoff. As an initiatory study, this work estimates lead, copper, cadmium, and zinc loadings from various sources in a developed area utilizing information available in the literature, in conjunction with controlled experimental and sampling investigations. Specific sources examined include building siding and roofs; automobile brakes, tires, and oil leakage; and wet and dry atmospheric deposition. Important sources identified are building siding for all four metals, vehicle brake emissions for copper and tire wear for zinc. Atmospheric deposition is an important source for cadmium, copper, and lead. Loadings and source distributions depend on building and automobile density assumptions and the type of materials present in the area examined. Identified important sources are targeted for future comprehensive mechanistic studies. Improved information on the metal release and distributions from the specific sources, along with detailed characterization of watershed areas will allow refinements in the predictions. 相似文献
Environmental Science and Pollution Research - The livestock manure nitrogen load on farmland (LMNLF) is often used to assess the potential environmental pollution risk of livestock manure nitrogen... 相似文献
Environmental Science and Pollution Research - Paspalum distichum L. was tested to evaluate their phytoremediation capacity for Hg contaminated soil through analyzing the dissipation of Hg in soil... 相似文献
This study evaluated the individual and interactive effect of phenol and thiocyanate (SCN−) on partial nitritation (PN) activity using batch test and response surface methodology. The IC50 of phenol and SCN− on PN sludge were 5.6 and 351 mg L−1, respectively. The PN sludge was insensitive to phenol and SCN− at levels lower than 1.77 and 43.3 mg L−1, respectively. A regression model equation was developed and validated to predict the relative specific respiration rate (RSRR) of PN sludge exposed to different phenol and SCN− concentrations. In the range of independent variables, the most severe inhibition was observed with a valley value (17%) for RSRR, when the phenol and SCN− concentrations were 4.08 and 198 mg L−1, respectively. An isobole plot was used to judge the combined toxicity of phenol and SCN−, and the joint inhibitory effect was variable depending on the composition and concentration of the toxic components. Furthermore, the toxic compounds showed independent effects, which is the most common type of combined toxicity.