首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2331篇
  免费   48篇
  国内免费   27篇
安全科学   98篇
废物处理   94篇
环保管理   715篇
综合类   142篇
基础理论   496篇
环境理论   1篇
污染及防治   608篇
评价与监测   160篇
社会与环境   74篇
灾害及防治   18篇
  2023年   15篇
  2022年   24篇
  2021年   22篇
  2020年   25篇
  2019年   25篇
  2018年   32篇
  2017年   34篇
  2016年   48篇
  2015年   39篇
  2014年   40篇
  2013年   307篇
  2012年   76篇
  2011年   94篇
  2010年   91篇
  2009年   64篇
  2008年   102篇
  2007年   103篇
  2006年   115篇
  2005年   95篇
  2004年   64篇
  2003年   92篇
  2002年   84篇
  2001年   26篇
  2000年   37篇
  1999年   27篇
  1998年   43篇
  1997年   31篇
  1996年   32篇
  1995年   30篇
  1994年   26篇
  1993年   22篇
  1992年   27篇
  1991年   24篇
  1990年   26篇
  1989年   22篇
  1988年   28篇
  1987年   20篇
  1986年   22篇
  1985年   25篇
  1984年   42篇
  1983年   32篇
  1982年   36篇
  1981年   37篇
  1980年   26篇
  1979年   42篇
  1978年   28篇
  1977年   22篇
  1976年   19篇
  1971年   11篇
  1970年   9篇
排序方式: 共有2406条查询结果,搜索用时 0 毫秒
141.
ABSTRACT

Aerosol water content was determined from relative humidity controlled optical particle counter (ASASP-X) size distribution measurements made during the Southeastern Aerosol and Visibility Study (SEAVS) in the Great Smoky Mountains National Park during summer 1995. Since the scattering response function of the ASASP-X is sensitive to particle refractive index, a technique for calibrating the ASASP-X for any real refractive index was developed. A new iterative process was employed to calculate water mass concentration and wet refractive index as functions of relative humidity. Experimental water mass concentrations were compared to theoretically predicted values assuming only ammonium sulfate compounds were hygroscopic. These comparisons agreed within experimental uncertainty. Estimates of particle hygroscopicity using a rural aerosol model of refractive index as a function of relative humidity demonstrated no significant differences from those made with daily varying refractive index estimates. Although aerosol size parameters were affected by the assumed chemical composition, forming ratios of these parameters nearly canceled these effects.  相似文献   
142.
143.
144.
This report documents the extent to which coral colonies show fluctuations in their associations with different endosymbiotic dinoflagellates. The genetic identity of Symbiodinium from six coral species [Acropora palmata (Lamarck), A. cervicornis (Lamarck), Siderastrea siderea (Ellis and Solander), Montastrea faveolata (Ellis and Solander), M. annularis (Ellis and Solander), and M. franksi (Gregory)] was examined seasonally over five years (1998 and 2000–2004) in the Bahamas and Florida Keys at shallow (1 to 4 m) fore-reef/patch reef sites and at deeper fore-reef (12–15 m) locations. Symbionts were identified genetically using denaturing gradient gel electrophoresis (DGGE) fingerprinting of the internal transcribed spacer region 2 (ITS2) of ribosomal RNA gene loci. Repetitive sampling from most labeled colonies from the Bahamas and the Florida Keys showed little to no change in their dominant symbiont. In contrast, certain colonies of M. annularis and M. franksi from the Florida Keys exhibited shifts in their associations attributed to recovery from the stresses of the 1997–1998 El Niño southern oscillation (ENSO) event. Over several years, a putatively stress-tolerant clade D type of Symbiodinium was progressively replaced in these colonies by symbionts typically found in M. annularis and M. franksi in Florida and at other Caribbean locations. Greater environmental fluctuations in Florida may explain the observed changes among some of the symbioses. Furthermore, symbiotic associations were more heterogeneous at shallow sites, relative to deep sites. The exposure to greater environmental variability near the surface may explain the higher symbiont diversity found within and between host colonies.  相似文献   
145.
146.
Royle JA  Link WA 《Ecology》2006,87(4):835-841
Site occupancy models have been developed that allow for imperfect species detection or "false negative" observations. Such models have become widely adopted in surveys of many taxa. The most fundamental assumption underlying these models is that "false positive" errors are not possible. That is, one cannot detect a species where it does not occur. However, such errors are possible in many sampling situations for a number of reasons, and even low false positive error rates can induce extreme bias in estimates of site occupancy when they are not accounted for. In this paper, we develop a model for site occupancy that allows for both false negative and false positive error rates. This model can be represented as a two-component finite mixture model and can be easily fitted using freely available software. We provide an analysis of avian survey data using the proposed model and present results of a brief simulation study evaluating the performance of the maximum-likelihood estimator and the naive estimator in the presence of false positive errors.  相似文献   
147.
Straub CS  Snyder WE 《Ecology》2006,87(2):277-282
Agricultural pest suppression is an important ecosystem service that may be threatened by the loss of predator diversity. This has stimulated interest in the relationship between predator biodiversity and biological control. Multiple-predator studies have shown that predators may complement or interfere with one another, but few experiments have determined if the resulting effects on prey are caused by changes in predator abundance, identity, species richness, or some combination of these factors. We experimentally isolated the effect of predator species richness on the biological control of an important agricultural pest, the green peach aphid. We found no evidence that increasing predator species richness affects aphid biological control; overall there was no strong complementarity or interference among predator species that altered the strength of aphid suppression. Instead, our experiments revealed strong effects of predator species identity, because predators varied dramatically in their per capita consumption rates. Our results are consistent with other multiple-predator studies finding strong species-identity effects and suggest that, for the biological control of aphids, conservation strategies that directly target key species will be more effective than those targeting predator biodiversity more broadly.  相似文献   
148.
A trait-based test for habitat filtering: convex hull volume   总被引:11,自引:0,他引:11  
Cornwell WK  Schwilk LD  Ackerly DD 《Ecology》2006,87(6):1465-1471
Community assembly theory suggests that two processes affect the distribution of trait values within communities: competition and habitat filtering. Within a local community, competition leads to ecological differentiation of coexisting species, while habitat filtering reduces the spread of trait values, reflecting shared ecological tolerances. Many statistical tests for the effects of competition exist in the literature, but measures of habitat filtering are less well-developed. Here, we present convex hull volume, a construct from computational geometry, which provides an n-dimensional measure of the volume of trait space occupied by species in a community. Combined with ecological null models, this measure offers a useful test for habitat filtering. We use convex hull volume and a null model to analyze California woody-plant trait and community data. Our results show that observed plant communities occupy less trait space than expected from random assembly, a result consistent with habitat filtering.  相似文献   
149.
Studies investigating disease resistance in marine plants have indicated that secondary metabolites may have important defensive functions against harmful marine microorganisms. The goal of this study was to systematically screen extracts from marine plants for antimicrobial effects against marine pathogens and saprophytes. Lipophilic and hydrophilic extracts from species of 49 marine algae and 3 seagrasses collected in the tropical Atlantic were screened for antimicrobial activity against five ecologically relevant marine microorganisms from three separate kingdoms. These assay microbes consisted of the pathogenic fungus Lindra thalassiae, the saprophytic fungus Dendryphiella salina, the saprophytic stramenopiles, Halophytophthora spinosa and Schizochytrium aggregatum, and the pathogenic bacterium Pseudoaltermonas bacteriolytica. Overall, 90% of all species surveyed yielded extracts that were active against one or more, and 77% yielded extracts that were active against two or more assay microorganisms. Broad-spectrum activity against three or four assay microorganisms was observed in the extracts from 48 and 27% of all species, respectively. The green algae Halimeda copiosa and Penicillus capitatus (Chlorophyta) were the only species to yield extracts active against all assay microorganisms. Among all assay microorganisms, both fungi were the most resistant to the extracts tested, with less than 21% of all extracts inhibiting the growth of either L. thalassiae or D. salina. In contrast, over half of all lipophylic extracts were active against the stramenopiles H. spinosa and S. aggregatum, and the bacterium P. bacteriolytica. Growth sensitivity to hydrophilic extracts varied considerably between individual assay microorganisms. While 48% of all hydrophilic extracts were active against H. spinosa, 27% were active against P. bacteriolytica, and only 14% were active against S. aggregatum. Overall, more lipophilic extracts inhibited microbial growth than hydrophilic extracts. The variability observed in the antimicrobial effects of individual extracts against each assay microorganism reflects the importance of choosing appropriate test microbes in assays from which ecologically relevant information is sought. Results from this survey demonstrate that antimicrobial activities are prevalent among extracts from marine algae and seagrasses, suggesting that antimicrobial chemical defenses are widespread among marine plants.  相似文献   
150.
A novel biodegradable polymer based on glycerol, succinic anhydride and maleic anhydride, poly(glycerol succinate-co-maleate), poly(GlySAMA), was synthesized by melt polycondensation and tested as a matrix for composites with nanocrystalline cellulose. This glycerol-based polymer is thermally stable as a consequence of its targeted cross-linked structure. To broaden its range of properties, it was specifically formulated with nanocrystalline cellulose (NCC) at concentrations of 1, 2 and 4 wt%, and showed improved mechanical properties with NCC. Specifically, the effect of reinforcement on mechanical properties, thermal stability, structure, and biodegradability was evaluated, respectively, by tensile tests and thermogravimetric analyses, X-ray diffraction and respirometry. The neat poly(GlySAMA) polymer proved flexible, exhibiting an elongation-to-break of 8.8 % while the addition of nanowhiskers (at 4 wt%) caused tensile strength and Young’s modulus to increase, 20 and 40 %, respectively. Stiffness improved without significantly decreasing thermal stability as measured by thermogravimetric analysis. Biodegradation tests indicated that all samples were degradable but NCC reduced the rate of biodegradation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号