首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17876篇
  免费   201篇
  国内免费   154篇
安全科学   478篇
废物处理   761篇
环保管理   2526篇
综合类   2683篇
基础理论   4822篇
环境理论   6篇
污染及防治   4582篇
评价与监测   1217篇
社会与环境   1043篇
灾害及防治   113篇
  2022年   147篇
  2021年   128篇
  2020年   123篇
  2019年   134篇
  2018年   229篇
  2017年   266篇
  2016年   377篇
  2015年   303篇
  2014年   488篇
  2013年   1503篇
  2012年   570篇
  2011年   792篇
  2010年   706篇
  2009年   646篇
  2008年   771篇
  2007年   810篇
  2006年   702篇
  2005年   607篇
  2004年   588篇
  2003年   601篇
  2002年   576篇
  2001年   684篇
  2000年   510篇
  1999年   280篇
  1998年   216篇
  1997年   238篇
  1996年   239篇
  1995年   267篇
  1994年   260篇
  1993年   201篇
  1992年   223篇
  1991年   204篇
  1990年   230篇
  1989年   211篇
  1988年   177篇
  1987年   184篇
  1986年   175篇
  1985年   178篇
  1984年   190篇
  1983年   174篇
  1982年   161篇
  1981年   156篇
  1980年   141篇
  1979年   164篇
  1978年   127篇
  1977年   135篇
  1976年   98篇
  1974年   98篇
  1973年   106篇
  1972年   91篇
排序方式: 共有10000条查询结果,搜索用时 656 毫秒
901.
The use of native starch as a thermoplastic polymer is limited by its fragility and high water absorption. Due to the presence of several hydroxyl groups in its structure, water acts as a natural plasticizer of starch, modifying its properties. It is necessary to chemically modify starch molecules by replacing hydroxyl groups with other functional groups to reduce water absorption. Chemical modification of starch granules also alters its swelling and gelatinization behavior. In this contribution we describe the chemical modification of starch and its influence on its hydrophilicity and heat resistance. Acetic acid, maleic anhydride and octanoyl chloride were used as derivatizing reagents. The effectiveness of the treatments was evaluated by means of infrared spectroscopy. Different tests were conducted in order to evaluate the influence of the different chemical modifications on starch structure and properties. Results showed that the treatments effectively reduced starch moisture susceptibility, while substantially altering other properties such as amylose content, swelling power, solubility, and heat resistance. Finally, films were prepared from native and derivatized starch and their surface polarity was evaluated.  相似文献   
902.
In the South of Italy, it is common for farmers to burn pruning waste from olive trees in spring. In order to evaluate the impact of the biomass burning source on the physical and chemical characteristics of the particulate matter (PM) emitted by these fires, a PM monitoring campaign was carried out in an olive grove. Daily PM10 samples were collected for 1 week, when there were no open fires, and when biomass was being burned, and at two different distances from the fires. Moreover, an optical particle counter and a polycyclic aromatic hydrocarbon (PAH) analyzer were used to measure the high time-resolved dimensional distribution of particles emitted and total PAHs concentrations, respectively. Chemical analysis of PM10 samples identified organic and inorganic components such as PAHs, ions, elements, and carbonaceous fractions (OC, EC). Analysis of the collected data showed the usefulness of organic and inorganic tracer species and of PAH diagnostic ratios for interpreting the impact of biomass fires on PM levels and on its chemical composition. Finally, high time-resolved monitoring of particle numbers and PAH concentrations was performed before, during, and after biomass burning, and these concentrations were seen to be very dependent on factors such as weather conditions, combustion efficiency, and temperature (smoldering versus flaming conditions), and moisture content of the wood burned.  相似文献   
903.
In order to assess indoor air quality (IAQ), two 1-week monitoring campaigns of volatile organic compounds (VOC) were performed in different areas of a multistorey shopping mall. High-spatial-resolution monitoring was conducted at 32 indoor sites located in two storehouses and in different departments of a supermarket. At the same time, VOC concentrations were monitored in the mall and parking lot area as well as outdoors. VOC were sampled at 48-h periods using diffusive samplers suitable for thermal desorption. The samples were then analyzed with gas chromatography–mass spectrometry (GC–MS). The data analysis and chromatic maps indicated that the two storehouses had the highest VOC concentrations consisting principally of terpenes. These higher TVOC concentrations could be a result of the low efficiency of the air exchange and intake systems, as well as the large quantity of articles stored in these small spaces. Instead, inside the supermarket, the food department was the most critical area for VOC concentrations. To identify potential emission sources in this department, a continuous VOC analyzer was used. The findings indicated that the highest total VOC concentrations were present during cleaning activities and that these activities were carried out frequently in the food department. The study highlights the importance of conducting both high-spatial-resolution monitoring and high-temporal-resolution monitoring. The former was able to identify critical issues in environments with a complex emission scenario while the latter was useful in interpreting the dynamics of each emission source.  相似文献   
904.
Pharmaceuticals are commonly found both in the aquatic and the agricultural environments as a consequence of the human activities and associated discharge of wastewater effluents to the environment. The utilization of treated effluent for crop irrigation, along with land application of manure and biosolids, accelerates the introduction of these compounds into arable lands and crops. Despite the low concentrations of pharmaceuticals usually found, the continuous introduction into the environment from different pathways makes them ‘pseudo-persistent’. Several reviews have been published regarding the potential impact of veterinary and human pharmaceuticals on arable land. However, plant uptake as well as phytotoxicity data are scarcely studied. Simultaneously, phytoremediation as a tool for pharmaceutical removal from soils, sediments and water is starting to be researched, with promising results. This review gives an in-depth overview of the phytotoxicity of pharmaceuticals, their uptake and their removal by plants. The aim of the current work was to map the present knowledge concerning pharmaceutical interactions with plants in terms of uptake and the use of plant-based systems for phytoremediation purposes.  相似文献   
905.
Information regarding air emissions from shale gas extraction and production is critically important given production is occurring in highly urbanized areas across the United States. Objectives of this exploratory study were to collect ambient air samples in residential areas within 61 m (200 feet) of shale gas extraction/production and determine whether a “fingerprint” of chemicals can be associated with shale gas activity. Statistical analyses correlating fingerprint chemicals with methane, equipment, and processes of extraction/production were performed. Ambient air sampling in residential areas of shale gas extraction and production was conducted at six counties in the Dallas/Fort Worth (DFW) Metroplex from 2008 to 2010. The 39 locations tested were identified by clients that requested monitoring. Seven sites were sampled on 2 days (typically months later in another season), and two sites were sampled on 3 days, resulting in 50 sets of monitoring data. Twenty-four-hour passive samples were collected using summa canisters. Gas chromatography/mass spectrometer analysis was used to identify organic compounds present. Methane was present in concentrations above laboratory detection limits in 49 out of 50 sampling data sets. Most of the areas investigated had atmospheric methane concentrations considerably higher than reported urban background concentrations (1.8–2.0 ppmv). Other chemical constituents were found to be correlated with presence of methane. A principal components analysis (PCA) identified multivariate patterns of concentrations that potentially constitute signatures of emissions from different phases of operation at natural gas sites. The first factor identified through the PCA proved most informative. Extreme negative values were strongly and statistically associated with the presence of compressors at sample sites. The seven chemicals strongly associated with this factor (o-xylene, ethylbenzene, 1,2,4-trimethylbenzene, m- and p-xylene, 1,3,5-trimethylbenzene, toluene, and benzene) thus constitute a potential fingerprint of emissions associated with compression.

Implications: Information regarding air emissions from shale gas development and production is critically important given production is now occurring in highly urbanized areas across the United States. Methane, the primary shale gas constituent, contributes substantially to climate change; other natural gas constituents are known to have adverse health effects. This study goes beyond previous Barnett Shale field studies by encompassing a wider variety of production equipment (wells, tanks, compressors, and separators) and a wider geographical region. The principal components analysis, unique to this study, provides valuable information regarding the ability to anticipate associated shale gas chemical constituents.  相似文献   

906.
Isotopic measurements of the 34 m3/s discharge from the Fall River Springs of northern California indicate recharge from 50 km upgradient in high elevation regions of Medicine Lake Volcano. Age determinations suggest less than 20-year travel time. Data demonstrate Klamath Basin further north cannot be a recharge source. Mass balance calculations support that annual precipitation on the volcano supplies observed spring discharge, requiring 50%–75% recharge rates. Radiocarbon and δ13C of dissolved inorganic carbon indicate 30%–40% is derived from magmatic CO2. Measured excess 3He is also consistent with the presence of magmatic gas derived from the Quaternary Age Medicine Lake Volcano.  相似文献   
907.
Air pollution has been an increasing concern within the Kingdom of Saudi Arabia and other Middle Eastern countries. In this work the authors present an analysis of daily ozone (O3), nitrogen oxide (NOx), and particulate matter (<10 μm aerodynamic diameter; PM10) concentrations for two years (2010 and 2011) at sites in and around the coastal city of Jeddah, as well as a remote background site for comparison. Monthly and weekly variations, along with their implications and consequences, were also examined. O3 within Jeddah was remarkably low, and exhibited the so-called weekend effect—elevated O3 levels on the weekends, despite reduced emissions of O3 precursors on those days. Weekend O3 increases averaged between 12% and 14% in the city, suggesting that NOx/volatile organic compound (VOC) ratios within cities such as Jeddah may be exceptionally high. Sites upwind or far removed from Jeddah did not display this weekend effect. Based on these results, emission control strategies in and around Jeddah must carefully address NOx/VOC ratios so as to reduce O3 at downwind locations without increasing it within urban locations themselves. PM10 concentrations within Jeddah were elevated compared with North American cites of similar climatology, though comparable to other large cities within the Middle East.
Implications:Daily concentrations of O3, PM10, and NOx in and around the city of Jeddah, Saudi Arabia, are analyzed and compared with those of other reference cities. Extremely low O3 levels, along with a significant urban weekend effect (higher weekend O3, despite reduced NOx concentrations), is apparent, along with high levels of PM10 within the city. Urban O3 in Jeddah was found to be lower than that of other comparable cities, but the strong weekend effect suggests that care must be taken to reduce downwind O3 levels without increasing them within the city itself. Further research into the emissions and chemistry contributing to the reduced O3 levels within the city is warranted.  相似文献   
908.
Globally, greenhouse gas budgets are dominated by natural sources, and aquatic ecosystems are a prominent source of methane (CH4) to the atmosphere. Beaver (Castor canadensis and Castor fiber) populations have experienced human-driven change, and CH4 emissions associated with their habitat remain uncertain. This study reports the effect of near extinction and recovery of beavers globally on aquatic CH4 emissions and habitat. Resurgence of native beaver populations and their introduction in other regions accounts for emission of 0.18–0.80 Tg CH4 year−1 (year 2000). This flux is approximately 200 times larger than emissions from the same systems (ponds and flowing waters that became ponds) circa 1900. Beaver population recovery was estimated to have led to the creation of 9500–42 000 km2 of ponded water, and increased riparian interface length of >200 000 km. Continued range expansion and population growth in South America and Europe could further increase CH4 emissions.

Electronic supplementary material

The online version of this article (doi:10.1007/s13280-014-0575-y) contains supplementary material, which is available to authorized users.  相似文献   
909.
In recent years, climate impact assessments of relevance to the agricultural and forestry sectors have received considerable attention. Current ecosystem models commonly capture the effect of a warmer climate on biomass production, but they rarely sufficiently capture potential losses caused by pests, pathogens and extreme weather events. In addition, alternative management regimes may not be integrated in the models. A way to improve the quality of climate impact assessments is to increase the science–stakeholder collaboration, and in a two-way dialog link empirical experience and impact modelling with policy and strategies for sustainable management. In this paper we give a brief overview of different ecosystem modelling methods, discuss how to include ecological and management aspects, and highlight the importance of science–stakeholder communication. By this, we hope to stimulate a discussion among the science–stakeholder communities on how to quantify the potential for climate change adaptation by improving the realism in the models.  相似文献   
910.
The Varroa mite (Varroa destructor) is implicated as a major disease factor in honey bee (Apis mellifera) populations worldwide. Honey bees are extensively relied upon for pollination services, and in countries such as New Zealand and Australia where honey bees have been introduced specifically for commercial pollinator services, the economic effects of any decline in honey bee numbers are predicted to be profound. V. destructor established in New Zealand in 2000 but as yet, Australia remains Varroa-free. Here we analyze the history of V. destructor invasion and spread in New Zealand and discuss the likely long-term impacts. When the mite was discovered in New Zealand, it was considered too well established for eradication to be feasible. Despite control efforts, V. destructor has since spread throughout the country. Today, assessing the impacts of the arrival of V. destructor in this country is compromised by a paucity of data on pollinator communities as they existed prior to invasion. Australia’s Varroa-free status provides a rare and likely brief window of opportunity for the global bee research community to gain understanding of honey bee-native pollinator community dynamics prior to Varroa invasion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号