首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2330篇
  免费   48篇
  国内免费   27篇
安全科学   98篇
废物处理   94篇
环保管理   715篇
综合类   142篇
基础理论   496篇
环境理论   1篇
污染及防治   607篇
评价与监测   160篇
社会与环境   74篇
灾害及防治   18篇
  2023年   14篇
  2022年   24篇
  2021年   22篇
  2020年   25篇
  2019年   25篇
  2018年   32篇
  2017年   34篇
  2016年   48篇
  2015年   39篇
  2014年   40篇
  2013年   307篇
  2012年   76篇
  2011年   94篇
  2010年   91篇
  2009年   64篇
  2008年   102篇
  2007年   103篇
  2006年   115篇
  2005年   95篇
  2004年   64篇
  2003年   92篇
  2002年   84篇
  2001年   26篇
  2000年   37篇
  1999年   27篇
  1998年   43篇
  1997年   31篇
  1996年   32篇
  1995年   30篇
  1994年   26篇
  1993年   22篇
  1992年   27篇
  1991年   24篇
  1990年   26篇
  1989年   22篇
  1988年   28篇
  1987年   20篇
  1986年   22篇
  1985年   25篇
  1984年   42篇
  1983年   32篇
  1982年   36篇
  1981年   37篇
  1980年   26篇
  1979年   42篇
  1978年   28篇
  1977年   22篇
  1976年   19篇
  1971年   11篇
  1970年   9篇
排序方式: 共有2405条查询结果,搜索用时 62 毫秒
911.
Abstract

The capping of stationary source emissions of NOx in 22 states and the District of Columbia is federally mandated by the NOx SIP Call legislation with the intended purpose of reducing downwind O3 concentrations. Monitors for NO, NO2, and the reactive oxides of nitrogen into which these two compounds are converted will record data to evaluate air quality model (AQM) predictions. Guidelines for testing these models indicate the need for semicontinuous measurements as close to real time as possible but no less frequently than once per hour. The measurement uncertainty required for AQM testing must be less than ±20% (±10% for NO2) at mixing ratios of 1 ppbv and higher for NO, individual NOz component compounds, and NOy. This article is a review and discussion of different monitoring methods, some currently used in research and others used for routine monitoring. The performance of these methods is compared with the monitoring guidelines. Recommendations for advancing speciated and total NOy monitoring technology and a listing of demonstrated monitoring approaches are also presented.  相似文献   
912.
Abstract

Although the fugitive dust associated with construction mud/dirt carryout can represent a substantial portion of the particulate matter (PM) emissions inventory in non-attainment areas, it has not been well characterized by direct sampling methods. In this paper, a research program is described that directly determined both PM10 and PM2.5 (particles ≤10 and 2.5 μm in classical aerodynamic diameter, respectively) emission factors for mud/dirt carryout from a major construction project located in metropolitan Kansas City, MO. The program also assessed the contribution of automotive emissions to the total PM2.5 burden and determined the baseline emissions from the test road. As part of the study, both time-integrated and continuous exposure-profiling methods were used to assess the PM emissions, including particle size and elemental composition. This research resulted in overall PM10 and PM2.5 emission factors of 6 and 0.2 g/vehicle, respectively. Although PM10 is within the range of prior U.S. Environmental Protection Agency (EPA) guidance, the PM2.5 emission factor is far lower than previous estimates published by EPA. In addition, based on both the particle size and chemical data obtained in the study, a major portion of the PM2.5 emissions appears to be attributable to automotive exhaust from light-duty, gasoline-powered vehicles and not to the fugitive dust associated with re-entrained mud/dirt carryout.  相似文献   
913.
Oxyfuel combustion is a promising technology that may greatly facilitate carbon capture and sequestration by increasing the relative CO2 content of the combustion emission stream. However, the potential effect of enhanced oxygen combustion conditions on emissions of criteria and hazardous air pollutants (e.g., acid gases, particulates, metals and organics) is not well studied. It is possible that combustion under oxyfuel conditions could produce emissions posing different risks than those currently being managed by the power industry (e.g., by changing the valence state of metals). The data available for addressing these concerns are quite limited and are typically derived from laboratory-scale or pilot-scale tests. A review of the available data does suggest that oxyfuel combustion may decrease the air emissions of some pollutants (e.g., SO2, NOx, particulates) whereas data for other pollutants are too limited to draw any conclusions. The oxy-combustion systems that have been proposed to date do not have a conventional “stack” and combustion flue gas is treated in such a way that solid or liquid waste streams are the major outputs. Use of this technology will therefore shift emissions from air to solid or liquid waste streams, but the risk management implications of this potential change have yet to be assessed. Truly useful studies of the potential effects of oxyfuel combustion on power plant emissions will require construction of integrated systems containing a combustion system coupled to a CO2 processing unit. Sampling and analysis to assess potential emission effects should be an essential part of integrated system tests.

Implications: Oxyfuel combustion may facilitate carbon capture and sequestration by increasing the relative CO2 content of the combustion emission stream. However, the potential effect of enhanced oxygen combustion conditions on emissions of criteria and hazardous air pollutants has not been well studied. Combustion under oxyfuel conditions could produce emissions posing different risks than those currently being managed by the power industry. Therefore, before moving further with oxyfuel combustion as a new technology, it is appropriate to summarize the current understanding of potential emissions risk and to identify data gaps as priorities for future research.  相似文献   
914.
This work applied a propagation of uncertainty method to typical total suspended particulate (TSP) sampling apparatus in order to estimate the overall measurement uncertainty. The objectives of this study were to estimate the uncertainty for three TSP samplers, develop an uncertainty budget, and determine the sensitivity of the total uncertainty to environmental parameters. The samplers evaluated were the TAMU High Volume TSP Sampler at a nominal volumetric flow rate of 1.42 m3 min–1 (50 CFM), the TAMU Low Volume TSP Sampler at a nominal volumetric flow rate of 17 L min–1 (0.6 CFM) and the EPA TSP Sampler at the nominal volumetric flow rates of 1.1 and 1.7 m3 min–1 (39 and 60 CFM). Under nominal operating conditions the overall measurement uncertainty was found to vary from 6.1 x 10–6 g m–3 to 18.0 x 10–6 g m–3, which represented an uncertainty of 1.7% to 5.2% of the measurement. Analysis of the uncertainty budget determined that three of the instrument parameters contributed significantly to the overall uncertainty: the uncertainty in the pressure drop measurement across the orifice meter during both calibration and testing and the uncertainty of the airflow standard used during calibration of the orifice meter. Five environmental parameters occurring during field measurements were considered for their effect on overall uncertainty: ambient TSP concentration, volumetric airflow rate, ambient temperature, ambient pressure, and ambient relative humidity. Of these, only ambient TSP concentration and volumetric airflow rate were found to have a strong effect on the overall uncertainty. The technique described in this paper can be applied to other measurement systems and is especially useful where there are no methods available to generate these values empirically.

Implications:?This work addresses measurement uncertainty of TSP samplers used in ambient conditions. Estimation of uncertainty in gravimetric measurements is of particular interest, since as ambient particulate matter (PM) concentrations approach regulatory limits, the uncertainty of the measurement is essential in determining the sample size and the probability of type II errors in hypothesis testing. This is an important factor in determining if ambient PM concentrations exceed regulatory limits. The technique described in this paper can be applied to other measurement systems and is especially useful where there are no methods available to generate these values empirically.  相似文献   
915.
Weldon Spring is consistently enriched in 18 O relative to other karst springs in east-central Missouri and western Illinois, suggesting an evaporated source component. Regional potentiometric head maps of the shallow aquifer suggest that Prairie Lake, an artificial lake built between 1954 and 1982, could represent this component. Isotopic, biological and chemical tracing of the spring conclusively verify the hypothesis that this lake has impacted Weldon Spring. Mixing calculations indicate that Weldon Spring is now comprised of approximately 80% lake water and 20% groundwater. Recent measurements indicate that the discharge rate of the spring is now approximately 10 times the rate prior to the construction of the lake, confirming the augmentation of flow by a new source. Analysis of the isotopic trends indicates that the subsurface travel time is short, and suggests that the conduits connecting the lake and the spring may be progressively enlarging.  相似文献   
916.
The search for ways of reducing vehicular emissions has led to numerous investigations of the relationships between fuel composition and the pollutants discharged from automobiles. The most obvious fuel effects result from evaporation of gasoline components from the fuel tanks and carburetors of vehicles which lack effective mechanical devices (such as those required on all 1971 model cars) to control evaporative losses. Thus, several laboratories and cooperative study groups (Coordinating Research Council and American Petroleum Institute) have investigated the ways in which fuel properties (especially the amounts and types of C4-C5 hydrocarbons) influence both the amount and the potential atmospheric reactivity of evaporative emissions.1–6 But fuel evaporation accounts for only a small portion of the total hydrocarbons emitted by automobiles, and gasoline modifications (such as volatility reductions) that reduce evaporative losses can lead to higher levels of hydrocarbons in automobile exhaust.4–6  相似文献   
917.
The Environmental Protection Agency is responsible for establishing, reviewing, and revising standards of performance for new stationary sources of air pollution. Since this federal program was authorized in 1970, standards of performance (commonly referred to as new source performance standards or NSPS) have been developed for 34 categories of stationary sources. These regulations have focused primarily on large new sources of particulate matter, NO x , and SO2 emissions. Recently, work has begun on NSPS for a number of source categories that emit volatile organic compounds. Environmental professionals in these industries and in many regulatory agencies have little direct experience with the NSPS program and are unaware of the detailed engineering, cost, and economic information available with each proposed rulemaking. This article, therefore, reviews the purposes, procedures, and benefits of the NSPS program. A summary of the NSPS that have been promulgated through February 1983 are presented in tabular form.  相似文献   
918.
Steel production from electric arc furnaces has been continuously rising over the past few years. The trend is expected to continue due to both the anticipated increase in demand for steel, and to the replacement of obsolete open hearth furnaces. In 1972 steel produced in electric arc furnaces, which makes up 25 to 30% of the annual United States steel production, was produced primarily from recycled scrap steel in approximately 300 electric arc furnaces operated by 99 companies at 121 locations.1 Over half of these furnaces are smaller than 50 tons, and many are located in small bar mills producing a variety of merchant steel products.  相似文献   
919.
Results from four field based collaborative tests and from one laboratory based collaborative test of the Orsat analytical procedure are discussed. The results from the five collaborative tests demonstrate that routinely using Orsat data to convert particulate emissions from combustion sources to the reference conditions of 50 % excess air and 12% carbon dioxide may introduce sizeable errors in the corrected particulate loading. Ways to improve the Orsat apparatus and increase the reliability of the data are suggested.

Also reported are the results from field and laboratory studies on the reliability of using individual carbon dioxide and oxygen analyzers of the Fyrite* type to determine stack gas molecular weight. The laboratory study, which was done using three cylinders containing mixtures of carbon dioxide, oxygen, carbon monoxide, and nitrogen of known concentration, determined that these analyzers give carbon dioxide and oxygen analyses of sufficient reliability to yield accurate molecular weights. The results of the field studies, which were done on actual flue gas samples, also support this conclusion.  相似文献   
920.
Data on dally maximum ozone concentrations measured at ambient air monitoring stations operated by state and local air pollution control agencies in the Eastern United States were analyzed using principal factor analysis. Four orthogonal factors representing O3 formation potentials were derived using the statistical package SPSS; these factors accounted for over two-thirds of the variations in 1978 summer O3 levels at 21 urban-oriented stations. The analysis confirmed that O3 variations are similar among stations within defined geographical areas; this confirmation supports the widely held theory that ambient O3 formations are reglonwlde. The analysis suggested that trends analysis for determining general progress in improving O3 air quality should be based on aggregate statistics from clusters of monitors rather than from a single monitoring station within areas associated with the derived factors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号