首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2335篇
  免费   48篇
  国内免费   27篇
安全科学   98篇
废物处理   94篇
环保管理   715篇
综合类   142篇
基础理论   496篇
环境理论   1篇
污染及防治   611篇
评价与监测   161篇
社会与环境   74篇
灾害及防治   18篇
  2023年   14篇
  2022年   24篇
  2021年   22篇
  2020年   25篇
  2019年   25篇
  2018年   33篇
  2017年   34篇
  2016年   48篇
  2015年   39篇
  2014年   40篇
  2013年   308篇
  2012年   76篇
  2011年   94篇
  2010年   91篇
  2009年   64篇
  2008年   102篇
  2007年   103篇
  2006年   115篇
  2005年   95篇
  2004年   65篇
  2003年   92篇
  2002年   84篇
  2001年   27篇
  2000年   37篇
  1999年   27篇
  1998年   43篇
  1997年   31篇
  1996年   32篇
  1995年   30篇
  1994年   26篇
  1993年   22篇
  1992年   27篇
  1991年   24篇
  1990年   26篇
  1989年   22篇
  1988年   28篇
  1987年   20篇
  1986年   22篇
  1985年   25篇
  1984年   42篇
  1983年   32篇
  1982年   36篇
  1981年   37篇
  1980年   26篇
  1979年   42篇
  1978年   28篇
  1977年   22篇
  1976年   19篇
  1971年   11篇
  1970年   9篇
排序方式: 共有2410条查询结果,搜索用时 312 毫秒
391.
Particulate matter mass (PM), trace gaseous pollutants, and select volatile organic compounds (VOCs) with meteorological variables were measured in Logan, Utah (Cache Valley), for >4 weeks during winter 2017 as part of the Utah Winter Fine Particle Study (UWFPS). Higher PM levels for short time periods and lower ozone (O3) levels were present due to meteorological and mountain valley conditions. Nitrogenous pollutants were relatively strongly correlated with PM variables. Diurnal cycles of NOx, O3, and fine PM(PM 2.5) (aerodynamic diameter <2.5 μm [PM2.5]) suggested formation from NOx. O3 levels increased from early morning into midafternoon, and NOx and PM2.5 increased throughout the morning, followed by sharp decreases. Toluene/benzene and xylenes/benzene ratios and VOC correlations with nitrogenous and PM species were indicative of local traffic sources. Wind sector comparisons suggested that pollutant levels were lower when winds were from nearby mountains to the east versus winds from northerly or southerly origins.

Implications: The Cache Valley in Idaho and Utah has been designated a PM2.5 nonattainment area that has been attributed to air pollution buildup during winter stagnation events. To inform state implementation plans for PM2.5 in Cache Valley and other PM2.5 nonattainment areas in Utah, a state and multiagency federal research effort known as the UWFPS was conducted in winter 2017. As part of the UWFPS, the U.S. Environmental Protection Agency (EPA) measured ground-based PM species and their precursors, VOCs, and meteorology in Logan, Utah. Results reported here from the EPA study in Logan provide additional understanding of wintertime air pollution conditions and possible sources of PM and gaseous pollutants as well as being useful for future PM control strategies in this area.  相似文献   

392.
Environmental photodegradation of mefenamic acid   总被引:1,自引:0,他引:1  
Werner JJ  McNeill K  Arnold WA 《Chemosphere》2005,58(10):1339-1346
Pharmaceuticals and personal care products are an emerging class of environmental pollutants. Photolysis is expected to be a major loss process for many of these compounds in surface waters, including the common non-steroidal anti-inflammatory drug mefenamic acid. The direct photolysis solar quantum yield of mefenamic acid was observed to be 1.5+/-0.3x10(-4). Significant photosensitization was observed in solutions of Suwanee River fulvic acid and Mississippi River water, as well as for the model photosensitization compounds 3'-methoxyacetophenone, 2-acetonaphthone and perinaphthenone. Quenching, sparging and light-filtering experiments suggested a direct reaction of mefenamic acid with excited triplet-state dissolved organic matter as the major photosensitization process. The persistence of the model photosensitizer suggests that the photosensitization by perinaphthenone occurs either by triplet-energy transfer or an electron transfer followed by rapid regeneration of the sensitizer. Due to its low quantum yield, the loss of mefenamic acid in sunlit natural waters is expected to depend on both direct and indirect photodegradation processes.  相似文献   
393.
An ozone (O3) exposure study was conducted in Nashville, TN, using passive O3 samplers to measure six weekly outdoor, indoor, and personal O3 exposure estimates for a group of 10- to 12-yr-old elementary school children. Thirty-six children from two Nashville area communities (Inglewood and Hendersonville) participated in the O3 sampling program, and 99 children provided additional time-activity information by telephone interview. By design, this study coincided with the 1994 Nashville/Middle Tennessee Ozone Study conducted by the Southern Oxidants Study, which provided enhanced continuous ambient O3 monitoring across the Nashville area. Passive sampling estimated weekly average outdoor O3 concentrations from 0.011 to 0.O30 ppm in the urban Inglewood community and from 0.015 to 0.042 ppm in suburban Hendersonville. The maximum 1- and 8-hr ambient concentrations encountered at the Hendersonville continuous monitor exceeded the levels of the 1- and 8-hr metrics for the O3 National Ambient Air Quality Standard. Weekly average personal O3 exposures ranged from 0.0013 to 0.0064 ppm (7-31% of outdoor levels). Personal O3 exposures reflected the proportional amount of time spent in indoor and outdoor environments. Air-conditioned homes displayed very low indoor O3 concentrations, and homes using open windows and fans for ventilation displayed much higher concentrations.  相似文献   
394.
Twelve suspected former secondary lead smelting sites were investigated. Ten of the sites were confirmed to be former secondary lead smelters or lead works by historical fire insurance maps and contemporaneous metal industry trade directories. At eight sites sampled, the ratio Sb:Pb was closer to ratios from 10 known lead smelting sites than were the As:Pb and Cd:Pb ratios. Data from the 10 known lead smelting sites showed that the Sb:Pb ratio is most characteristic of secondary lead smelting sites. This is because the primary alloy smelted at such sites is antimonial lead. Lead contamination at the eight sites investigated here can be attributed At least in part to the former smelters because of the association between Sb and Pb.  相似文献   
395.
In order to assess fully the impact of persistent organic pollutants (POPs) on human health, pollutant exchange at the interface between terrestrial plants, in particular food crops, and other environmental compartments must be thoroughly understood. In this regard, transfers of multicomponent and chiral pollutants are particularly informative. In the present study, zucchini (Cucurbita pepo L.) was planted in containerized, uncontaminated soil under both greenhouse and field conditions and exposed to air-borne chlordane contamination at 14.0 and 0.20 ng/m(3) (average, greenhouses), and 2.2 ng/m(3) (average, field). Chiral gas chromatography interfaced to an ion trap mass spectrometer was used to determine the chiral (trans-chlordane, TC, and cis-chlordane, CC) and achiral (trans-nonachlor, TN) chlordane components in vegetation, air, and soil compartments. The chlordane components of interest were detected in all vegetation tissues examined--root, stem, leaves, and fruits. When compared with the data from a soil-to-plant uptake study, the compositional profile of the chlordane components, i.e. the component fractions of TC, CC, and TN, in plant tissues, showed significantly different patterns between the air-to-plant and soil-to-plant pathways. Changes in the enantiomer fractions of TC and CC in plant tissues relative to the source, i.e. air or soil, although observed, were not markedly different between the two routes. This report provides the first comprehensive comparison between two distinct plant uptake routes for POPs and their subsequent translocation within plant tissues.  相似文献   
396.
Oxidation of pyrite at the Nopal I uranium deposit, Peña Blanca district, Chihuahua, Mexico has resulted in the formation of Fe-oxides/hydroxides. Anomalous U concentrations (i.e. several hundred to several thousand ppm) measured in goethite, hematite, and amorphous Fe-oxyhydroxides in a major fracture that crosscuts the deposit and the absence of U minerals in the fracture suggest that U was retained during secondary mineral growth or sorbed on mineral surfaces. Mobilization and transport of U away from the deposit is suggested by decreasing U concentrations in fracture-infilling materials and in goethite and hematite with distance from the deposit. Greater than unity 234U/238U activity ratios measured in fracture-infilling materials indicate relatively recent ( < 1 Ma) U uptake from fluids that carried excess 234U. Systematic decreases in 234U/238U activity ratios of fracture materials with distance from the deposit suggest a multistage mobilization process, such as remobilization of U from 234U-enriched infill minerals or differential or diminished transport of U-bearing solutions containing excess 234U.  相似文献   
397.
Small utility engines represent an important contribution to the emissions inventory and have been subjected to increasingly stringent regulations in recent years. For this project, a Tanaka two-stroke engine was tested in its original condition and with a modified fuel/oil injection system. The modified fuel/oil injection system applied to the Tanaka two-stroke engine resulted in significant emissions reductions of approximately 52% for carbon monoxide (CO), 70% for total hydrocarbons (THC), 70% for particulate matter (PM), and 67% for the regulated THC + nitrogen oxides metric. This technology met the California Air Resources Board's 2000 model-year regulations for all pollutants, with the exception of slightly higher PM emissions. Two additional two-stroke engines were tested under a new condition and after at least 100 hr of use to examine the effects of deterioration on in-use, two-stroke engines. For one engine, CO and PM emissions more than tripled after 162 hr of operation in the field, with smaller increases also observed for THC (20%). For the second engine, significant repairs were required throughout the 100 operating hours, which counteracted the effects of the emissions deterioration and resulted in lower CO and THC emissions.  相似文献   
398.
The Big Bend Regional Aerosol and Visibility Observational (BRAVO) field study was conducted from July to October 1999 and was followed by several years of modeling and data analyses to examine the causes of haze at Big Bend National Park TX (BBNP). During BRAVO, daily speciated fine (diameter <2.5 microm) particulate concentrations were measured at 37 sites throughout Texas. At the primary receptor site, K-Bar Ranch, there were many additional measurements including a "high-sensitivity" version of the 24-hr fine particulate elemental data. The spatial, temporal, and interspecies patterns in these data are examined here to qualitatively investigate source regions and source types influencing the fine particulate concentrations in Texas with an emphasis on sources of sulfates, the largest contributor to fine mass and light extinction. Peak values of particulate sulfur (S) varied spatially and seasonally. Maximum S was in Northeast Texas during the summer, whereas peak S at BBNP was in the fall. Sulfate acidity at BBNP also varied by month. Sources of Se were evident in Northeast Texas and from the Carbón I and II plants. High S episodes at BBNP during BRAVO had several different trace element characteristics. Carbon concentrations at BBNP during BRAVO were probably mostly urban-related, with arrival from the Houston area likely. The Houston artificial tracer released during the second half of BRAVO was highly correlated with some carbon fractions. There was evidence of the influence of African dust at sites throughout Texas during the summer. Patterns in several trace elements were also examined. Vanadium was associated with air masses from Mexico. Lead concentrations in southern Texas have dropped dramatically over the past several years.  相似文献   
399.
Oysters contaminated with norovirus present a significant public health risk when consumed raw. In this study, norovirus genome copy concentrations were determined in Pacific oysters (Magallana gigas) harvested from a sewage-impacted production site and then subjected to site-specific management procedures. These procedures consisted of relocation of oysters to an alternative production area during the norovirus high-risk winter periods (November to March) followed by an extended depuration (self-purification) under controlled temperature conditions. Significant differences in norovirus RNA concentrations were demonstrated at each point in the management process. Thirty-one percent of oyster samples from the main harvest area (Site 1) contained norovirus concentrations >?500 genome copies/g and 29% contained norovirus concentrations <?100 genome copies/g. By contrast, no oyster sample from the alternative harvest area (Site 2) or following depuration contained norovirus concentrations >?500 genome copies/g. In addition, 60 and 88% of oysters samples contained norovirus concentrations <?100 genome copies/g in oysters sampled from Site 2 and following depuration, respectively. These data demonstrate that site-specific management processes, supported by norovirus monitoring, can be an effective strategy to reduce, but not eliminate, consumer exposure to norovirus genome copies.  相似文献   
400.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号