首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   767篇
  免费   10篇
  国内免费   4篇
安全科学   59篇
废物处理   42篇
环保管理   138篇
综合类   68篇
基础理论   230篇
环境理论   1篇
污染及防治   155篇
评价与监测   61篇
社会与环境   23篇
灾害及防治   4篇
  2023年   4篇
  2022年   7篇
  2019年   5篇
  2018年   8篇
  2017年   9篇
  2016年   17篇
  2015年   13篇
  2014年   19篇
  2013年   76篇
  2012年   23篇
  2011年   46篇
  2010年   31篇
  2009年   26篇
  2008年   28篇
  2007年   31篇
  2006年   50篇
  2005年   21篇
  2004年   18篇
  2003年   26篇
  2002年   33篇
  2001年   23篇
  2000年   27篇
  1999年   12篇
  1998年   15篇
  1997年   11篇
  1996年   12篇
  1995年   13篇
  1994年   10篇
  1993年   9篇
  1992年   9篇
  1991年   9篇
  1990年   11篇
  1989年   7篇
  1988年   8篇
  1987年   8篇
  1986年   9篇
  1985年   6篇
  1984年   11篇
  1983年   5篇
  1982年   9篇
  1981年   7篇
  1980年   9篇
  1979年   5篇
  1978年   8篇
  1977年   4篇
  1976年   5篇
  1975年   3篇
  1974年   5篇
  1973年   5篇
  1969年   3篇
排序方式: 共有781条查询结果,搜索用时 675 毫秒
461.

Introduction  

A mercury (Hg) processing plant previously operating in KwaZulu-Natal Province (South Africa) discharged Hg waste into a nearby river system causing widespread contamination since the 1980s. Although the processing plant ceased operation in the 1990s, Hg contamination (due to residual Hg) remains significant. Previous studies in the area since the plant’s closure have found elevated Hg concentrations in fish, and that these concentrations were as a direct consequence of widespread contamination of the Hg processing plant operations conducted between the 1980s and 1990s.  相似文献   
462.
Air quality transcends all scales with in the atmosphere from the local to the global with handovers and feedbacks at each scale interaction. Air quality has manifold effects on health, ecosystems, heritage and climate. In this review the state of scientific understanding in relation to global and regional air quality is outlined. The review discusses air quality, in terms of emissions, processing and transport of trace gases and aerosols. New insights into the characterization of both natural and anthropogenic emissions are reviewed looking at both natural (e.g. dust and lightning) as well as plant emissions. Trends in anthropogenic emissions both by region and globally are discussed as well as biomass burning emissions. In terms of chemical processing the major air quality elements of ozone, non-methane hydrocarbons, nitrogen oxides and aerosols are covered. A number of topics are presented as a way of integrating the process view into the atmospheric context; these include the atmospheric oxidation efficiency, halogen and HOx chemistry, nighttime chemistry, tropical chemistry, heat waves, megacities, biomass burning and the regional hot spot of the Mediterranean. New findings with respect to the transport of pollutants across the scales are discussed, in particular the move to quantify the impact of long-range transport on regional air quality. Gaps and research questions that remain intractable are identified. The review concludes with a focus of research and policy questions for the coming decade. In particular, the policy challenges for concerted air quality and climate change policy (co-benefit) are discussed.  相似文献   
463.
Growing demand for corn due to the expansion of ethanol has increased concerns that environmentally sensitive lands retired from agricultural production and enrolled into the Conservation Reserve Program (CRP) will be cropped again. Iowa produces more ethanol than any other state in the United States, and it also produces the most corn. Thus, an examination of the impacts of higher crop prices on CRP land in Iowa can give insight into what we might expect nationally in the years ahead if crop prices remain high. We construct CRP land supply curves for various corn prices and then estimate the environmental impacts of cropping CRP land through the Environmental Policy Integrated Climate (EPIC) model. EPIC provides edge-of-field estimates of soil erosion, nutrient loss, and carbon sequestration. We find that incremental impacts increase dramatically as higher corn prices bring into production more and more environmentally fragile land. Maintaining current levels of environmental quality will require substantially higher spending levels. Even allowing for the cost savings that would accrue as CRP land leaves the program, a change in targeting strategies will likely be required to ensure that the most sensitive land does not leave the program.  相似文献   
464.
A field survey was conducted in arsenic impacted and non-impacted paddies of Bangladesh to assess how arsenic levels in rice (Oryza sativa L.) grain are related to soil and shoot concentrations. Ten field sites from an arsenic contaminated tubewell irrigation region (Faridpur) were compared to 10 field sites from a non-affected region (Gazipur). Analysis of the overall data set found that both grain and shoot total arsenic concentrations were highly correlated (P<0.001) with soil arsenic. Median arsenic concentrations varied by 14, 10 and 3 fold for soil, shoot and grain respectively comparing the two regions. The reason for the sharp decline in the magnitude of difference between Gazipur and Faridpur for grain arsenic was due to an exponential decline in the grain/shoot arsenic concentration ratio with increasing shoot arsenic concentration. When the Bangladesh data were compared to EU and US soil-shoot-grain transfers, the same generic pattern could be found with the exception that arsenic was more efficiently transferred to grain from soil/shoot in the Bangladesh grown plants. This may reflect climatic or cultivar differences.  相似文献   
465.
The effect of freezing on photoreactivation of two strains of Escherichia coli (ATCC strain 25922 and O157:H7 strain 961019) and two strains of Enterococcus faecalis (strain ATCC 51299, vancomycin-resistant and strain ATCC 29212, vancomycin-sensitive) following ultraviolet irradiation were examined. The level of log photoreactivation of the freezing treated test organisms (frozen at -7, -15, or -30 degrees C then thawed at room temperature prior to ultraviolet irradiation) was compared with that of the samples that had not been frozen. Freezing had obvious impact on the response of the test organisms to visible light following ultraviolet irradiation. Significantly lower levels of photoreactivation were observed in the freezing treated cells. The effect of freezing on the ability of the test microbes to photoreactivate seems to be strain and species dependent. Overall, the experimental results suggest that less photoreactivation could be expected if freezing is used as a treatment method prior to ultraviolet disinfection.  相似文献   
466.
Due to its resistance to many wastewater treatment processes, the antiepileptic drug carbamazepine (CBZ) is routinely found in wastewater effluent. Wastewater irrigation is an alternative to stream discharge of wastewater effluent, which utilizes the soil as a tertiary filter to remove excess nutrients and has the potential to remove pharmaceutical compounds. Previous data suggest that CBZ is strongly sorbed to soil; however, it is unknown what its fate is for long periods of irrigation and if land use affects its distribution. Therefore, the objectives of our research were to characterize CBZ concentrations in soils that have been receiving wastewater irrigation for >25 yr under three different land uses: cropped, grassed, and forested. Triplicate soil cores were collected at each of the land uses to a depth of 120 cm. Extractions for CBZ were performed using 5-g soil samples and 20 mL of acetonitrile. The extracted solutions were analyzed on a liquid chromatograph tandem mass spectrometer. The samples were also analyzed for supporting information such as organic carbon, pH, and electrical conductivity. Results suggest that there is accumulation of the CBZ in the surface soils, which have the highest organic carbon content. Average concentrations of CBZ in the surface soils were 4.92, 2.9, and 1.92 ng g, for the forested, grassed, and cropped land uses, respectively. The majority of the CBZ was found in the upper 30 cm of the profile. Our results suggest that the soils adsorb CBZ and slow its movement into groundwater, compared to the movement of nonadsorbed chemicals.  相似文献   
467.
Abstract

Norflurazon, oxadiazon, oxyfluorfen, trifluralin and simazine are herbicides widely used in the vineyards of the Barossa Valley, South Australia. The leaching behaviour of norflurazon, oxadiazon, oxyfluorfen and trifluralin was investigated on four key soils in the Barossa Valley. Leaching potential on packed soil columns and actual mobility using intact soil columns were investigated. On the packed soil columns, norflurazon was the most leachable herbicide. More of the herbicides were detected in the leachates from the sandy soils (Mountadam and Nuriootpa) than from the clayey soils (Lyndoch and Tanunda). Organic matter is generally low in soils in the Barossa region. Porosity and saturated conductivity significantly affect herbicide movement and in the sandy Mountadam and Nuriootpa soils, the water flux is greater than for the higher clay content Lyndoch and Tanunda soils. Increasing the time interval between herbicide application and the incidence of “rainfall”; reduced the amounts of herbicides found in the leachates. The use of intact soil columns and including simazine for comparison showed that both norflurazon and simazine were present in the leachates. Simazine was the first herbicide to appear in leachates. Sectioning of the intact soil columns after leaching clearly demonstrated that norflurazon and simazine reached the bottom of the soil columns for all soils studied. Greater amounts of norflurazon were retained in the soil columns compared with simazine. The other herbicides were mostly retained in the initial sections of the soil columns.  相似文献   
468.
It is estimated that there is sufficient in-state “technically” recoverable biomass to support nearly 4000 MW of bioelectricity generation capacity. This study assesses the emissions of greenhouse gases and air pollutants and resulting air quality impacts of new and existing bioenergy capacity throughout the state of California, focusing on feedstocks and advanced technologies utilizing biomass resources predominant in each region. The options for bioresources include the production of bioelectricity and renewable natural gas (NG). Emissions of criteria pollutants and greenhouse gases are quantified for a set of scenarios that span the emission factors for power generation and the use of renewable natural gas for vehicle fueling. Emissions are input to the Community Multiscale Air Quality (CMAQ) model to predict regional and statewide temporal air quality impacts from the biopower scenarios. With current technology and at the emission levels of current installations, maximum bioelectricity production could increase nitrogen oxide (NOx) emissions by 10% in 2020, which would cause increases in ozone and particulate matter concentrations in large areas of California. Technology upgrades would achieve the lowest criteria pollutant emissions. Conversion of biomass to compressed NG (CNG) for vehicles would achieve comparable emission reductions of criteria pollutants and minimize emissions of greenhouse gases (GHG). Air quality modeling of biomass scenarios suggest that applying technological changes and emission controls would minimize the air quality impacts of bioelectricity generation. And a shift from bioelectricity production to CNG production for vehicles would reduce air quality impacts further. From a co-benefits standpoint, CNG production for vehicles appears to provide the best benefits in terms of GHG emissions and air quality.

Implications:?This investigation provides a consistent analysis of air quality impacts and greenhouse gas emissions for scenarios examining increased biomass use. Further work involving economic assessment, seasonal or annual emissions and air quality modeling, and potential exposure analysis would help inform policy makers and industry with respect to further development and direction of biomass policy and bioenergy technology alternatives needed to meet energy and environmental goals in California.  相似文献   
469.
470.
A three-dimensional flow model of a hazardous waste incinerator kiln and vertical secondary combustion chamber arrangement was constructed to evaluate critical system parameters. The chamber wall configuration, location and arrangement of burners, and the positioning of the outlet duct were examined to determine the critical secondary combustion chamber gas residence time and mixing of the combustion flows. The scale model consisted of the rotary kiln as a primary combustion chamber, the secondary combustion chamber, two burners, and the exhaust ducting. Flue gas velocities in the model inlets and outlet were maintained to provide a Reynolds numbers equal to the full size unit. Patterns of smoke which were injected into the model inlets were viewed to evaluate flow mixing. Slow motion playback of video tape was used to determine the minimum residence time of flow in the high temperature combustion zone. The results of the model study were used to complete the engineering of a waste incineration system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号