首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   449篇
  免费   6篇
  国内免费   34篇
安全科学   17篇
废物处理   21篇
环保管理   36篇
综合类   87篇
基础理论   47篇
污染及防治   209篇
评价与监测   40篇
社会与环境   31篇
灾害及防治   1篇
  2023年   1篇
  2022年   2篇
  2021年   7篇
  2020年   2篇
  2019年   4篇
  2018年   9篇
  2017年   8篇
  2016年   15篇
  2015年   11篇
  2014年   9篇
  2013年   31篇
  2012年   11篇
  2011年   33篇
  2010年   20篇
  2009年   23篇
  2008年   23篇
  2007年   28篇
  2006年   27篇
  2005年   14篇
  2004年   18篇
  2003年   44篇
  2002年   18篇
  2001年   23篇
  2000年   14篇
  1999年   5篇
  1998年   5篇
  1997年   18篇
  1996年   6篇
  1994年   7篇
  1993年   3篇
  1992年   7篇
  1991年   10篇
  1990年   2篇
  1989年   3篇
  1988年   5篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1979年   4篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
  1971年   2篇
排序方式: 共有489条查询结果,搜索用时 15 毫秒
101.
If sustainable development of Canadian waters is to be achieved, a realistic and manageable framework is required for assessing cumulative effects. The objective of this paper is to describe an approach for aquatic cumulative effects assessment that was developed under the Northern Rivers Ecosystem Initiative. The approach is based on a review of existing monitoring practices in Canada and the presence of existing thresholds for aquatic ecosystem health assessments. It suggests that a sustainable framework is possible for cumulative effects assessment of Canadian waters that would result in integration of national indicators of aquatic health, integration of national initiatives (e.g., water quality index, environmental effects monitoring), and provide an avenue where long-term monitoring programs could be integrated with baseline and follow-up monitoring conducted under the environmental assessment process.  相似文献   
102.
Cadmium, lead, zinc, Chromium, copper, nickel and manganese in sediments and in aquatic organisms were collected from the aquaculture pond ecosystem of the Pearl River Delta (PRD), China and analyzed to evaluate bioaccumulation and trophic transfer in food chains, as well as the potential health risk of exposure to the Hong Kong residents via dietary intake of these aquatic products. The results revealed that based on the biota–sediment accumulation factor, omnivorous fish and zooplankton accumulated more trace metals from sediment than carnivorous fish. Concentrations of seven trace metals in aquaculture pond of PRD significantly decreased with increasing trophic levels, showing that these trace metals were trophically diluted in predatory and omnivorous food chains. The hazard index values of all fish species were smaller than 1 for adults and children, indicating there was no health risk from the multiple metals via ingestion of the freshwater fish for the inhabitants.  相似文献   
103.
Radical chemistry in the nocturnal urban boundary layer is dominated by the nitrate radical, NO3, which oxidizes hydrocarbons and, through the aerosol uptake of N2O5, indirectly influences the nitrogen budget. The impact of NO3 chemistry on polluted atmospheres and urban air quality is, however, not well understood, due to a lack of observations and the strong impact of vertical stability of the boundary layer, which makes nocturnal chemistry highly altitude dependent.Here we present long-path DOAS observations of the vertical distribution of the key nocturnal species O3, NO2, and NO3 during the TRAMP experiment in Summer 2006 in Houston, TX. Our observations confirm the altitude dependence of nocturnal chemistry, which is reflected in the concentration profiles of all trace gases at night. In contrast to other study locations, NO3 chemistry in Houston is dominated by industrial emissions of alkenes, in particular of isoprene, isobutene, and sporadically 1,3-butadiene, which are responsible for more than 70% of the nocturnal NO3 loss. The nocturnally averaged loss of NOx in the lowest 300 m of the Houston atmosphere is ~0.9 ppb h?1, with little day-to-day variability. A comparison with the daytime NOx loss shows that NO3 chemistry is responsible for 16–50% of the NOx loss in a 24-h period in the lowest 300 m of the atmosphere. The importance of the NO3 + isoprene/1,3-butadiene reactions implies the efficient formation of organic nitrates and secondary organic aerosol at night in Houston.  相似文献   
104.
Chen Y  Lu A  Li Y  Yip HY  An T  Li G  Jin P  Wong PK 《Chemosphere》2011,84(9):1276-1281
The photocatalytic disinfection of Escherichia coli K-12 is investigated by the natural sphalerite (NS) under different spectra, wavelengths and intensities of visible light (VL) emitted by light-emitting-diode lamp (LED). The spectrum effect of VL on disinfection efficiency is studied by using white LED, fluorescent tube (FT) and xenon lamp (XE), which indicates that the “discreted peak spectrum” of FT is more effective to inactivate bacteria than “continuous spectrum” of LED and XE. Besides, the photocatalytic disinfection of bacteria is compared under different single spectrum (blue, green, yellow and red color) LEDs. The results show that the most effective wavelength ranges of VL for photocatalytic disinfection with the NS are 440-490 and 570-620 nm. Furthermore, a positive relationship is obtained between the disinfection efficiency and the VL intensity. The experiment shows that NS can completely inactivate 107 cfu mL−1E. coli K-12 within 8 h irradiation by white LED with the intensity of 200 mW cm−2 at pH 8. Moreover, the destruction process of the cell wall and the cell membrane are directly observed by TEM. Finally, no bacterial colony can be detected within a 96 h regrowth test of inactivated bacteria, which reveals that the VL-photocatalytic disinfection leads to an irreversible damage to the bacterial cells.  相似文献   
105.
Yu GB  Liu Y  Yu S  Wu SC  Leung AO  Luo XS  Xu B  Li HB  Wong MH 《Chemosphere》2011,85(6):1080-1087
Numerous indices have been developed to assess environmental risk of heavy metals in surface sediments, including the total content based geoaccumulation index (Igeo), exchangeable fraction based risk assessment code (RAC), and biological toxicity test based sediment quality guidelines (SQGs). In this study, the three indices were applied to freshwater surface sediments from 10 sections along an urbanization gradient of the Grand Canal, China to assess the environmental risks of heavy metals (Cu, Pb, Zn, Cd, and Cr) and to understand discrepancies of risk assessment indices and urbanization effects regarding heavy metal contamination. Results showed that Cd, Zn, and Pb were the most enriched metals in urban sections assessed by Igeo and over 95% of the samples exceeded the Zn and Pb thresholds of the effect range low (ERL) of SQGs. According to RAC, Cu, Zn, Cd, and Cr had high risks of adversely affecting the water quality of the Grand Canal due to their remarkable portions of exchangeable fraction in surface sediment. However, Pb showed a relative low risk, and was largely bounded to Fe/Mn oxides in the urban surface sediments. Obviously, the three assessment indices were not consistent with each other in terms of predicting environmental risks attributed to heavy metals in the freshwater surface sediments of this study. It is recommended that risk assessment by SQGs should be revised according to availability and site specificity. However, the combination of the three indices gave us a comprehensive understanding of heavy metal risks in the urban surface sediments of the Grand Canal.  相似文献   
106.
107.
Shao D  Liang P  Kang Y  Wang H  Cheng Z  Wu S  Shi J  Lo SC  Wang W  Wong MH 《Chemosphere》2011,83(4):443-448
This study investigated total mercury (THg) and methylmercury (MeHg) concentrations in five species of freshwater fish and their associated fish pond sediments collected from 18 freshwater fish ponds around the Pearl River Delta (PRD). The concentrations of THg and MeHg in fish pond surface sediments were 33.1-386 ng g(-1) dry wt and 0.18-1.25 ng g(-1) dry wt, respectively. The age of ponds affected the surface sediment MeHg concentration. The vertical distribution of MeHg in sediment cores showed that MeHg concentrations decreased with increasing depth in the top 10 cm. In addition, a significant correlation was observed between %MeHg and DNA from Desulfovibrionacaea or Desulfobulbus (p<0.05) in sediment cores. Concentrations of THg and MeHg in fish muscles ranged from 7.43-76.7 to 5.93-76.1 ng g(-1) wet wt, respectively, with significant linear relationships (r=0.97, p<0.01, n=122) observed between THg and MeHg levels in fish. A significant correlation between THg concentrations in fish (herbivorous: r=0.71, p<0.05, n=7; carnivorous: r=0.77, p<0.05, n=11) and corresponding sediments was also obtained. Risk assessment indicated that the consumption of largemouth bass and mandarin fish would result in higher estimated daily intakes (EDIs) of MeHg than reference dose (RfD) for both adults and children.  相似文献   
108.
Qin YY  Leung CK  Leung AO  Zheng JS  Wong MH 《Chemosphere》2011,82(9):1329-1336
This study aims to investigate levels of POPs in meat, edible oils, nuts, milk and wine collected from Hong Kong. Naphthalene, pp-DDE, beta-, gamma-HCH and PBDE 47 were detected in most of the food items. Goose liver accumulated the highest PAHs (47.9 ng g−1 wet wt), DDTs (25.6), HCHs (13.0), PCBs (4.17), PBDEs (468 pg g−1 wet wt) among all the selected food. Meat and nut groups had significant (p < 0.01 or 0.05) correlations between lipid contents and concentrations of PAHs (meat: r = 0.878), HCHs (meat: r = 0.753), DDTs (meat: r = 0.937; nuts: r = 0.968) and PCBs (meat: r = 0.832; nut: r = 0.946). The concentrations of DDTs, HCHs and PCBs in vegetable oil were lower, but HCHs in fish oil were higher, when compared with other countries. The concentrations of PAHs, DDTs, PCBs and PBDEs in food tested in the present study were all below various safety guidelines.  相似文献   
109.
Litter materials from forested watersheds can be a significant source of dissolved organic matter (DOM) to surface waters that can contribute to the formation of carcinogenic disinfection by-products (DBPs) during drinking-water chlorination. This study characterized the reactivity of DOM from litter leachates of representative vegetation in oak woodlands, a major plant community in the Foothill Region of California. Leachates from fresh and decomposed litter (duff) from two oak species, pine, and annual grasses were collected for an entire rainy season to evaluate their reactivity to form DBPs on chlorination. Relationships among specific ultraviolet absorbance (SΔUVA), fluorescence index (FI), specific differential ultraviolet absorbance (SΔUVA), specific chlorine demand (SCD), and the dissolved organic carbon:dissolved organic nitrogen (DOC:DON) ratio to the specific DBP formation potential (SDBP-FP) were examined. The DOM derived from litter materials had considerable reactivity in forming trihalomethanes (THMs) (1.80-3.49 mmol mol), haloacetic acid (HAAs) (1.62-2.76 mmol mol(-1)), haloacetonitriles (HANs) (0.12-0.37 mmol mol(-1)), and chloral hydrate (CHD) (0.16-0.28 mmol mol). These values are comparable to other identified watershed sources of DBP precursors reported for the California Delta, such as wetlands and organic soils. Vegetation type and litter decomposition stage (fresh litter versus 1-5 yr-old duff) were key factors that determined characteristics of DOM and their reactivity to form DBPs. Pine litter had significantly lower specific THM formation potential compared with oak and grass, and decomposed duff had a greater DON content, which is a precursor of HANs and other nitrogenous DBPs. The SΔUVA and SDBP-FP were temporally variable and dependent on vegetation type, degree of decomposition, and environmental conditions. Among the optical properties of DOM, SΔUVA was the only parameter that was consistently correlated with SDBP-FP.  相似文献   
110.
Adsorption is one of the most promising technologies for reducing CO2 emissions and at present several different types of sorbents are being investigated. The use of sorbents obtained from low-cost and abundant precursors (i.e. solid wastes) appears an attractive strategy to adopt because it will contribute to a reduction not only in operational costs but also in the amount of waste that is dumped and burned in landfills every year. Following on from previous studies by the authors, in this work several carbon-based adsorbents were developed from different carpet wastes (pre-consumer and post-consumer wastes) by chemical activation with KOH at various activation temperatures (600–900 °C) and KOH:char impregnation ratios (0.5:1 to 4:1). The prepared materials were characterised by chemical analysis and gas adsorption (N2, −196 °C; CO2, 0 °C), and tested for CO2 adsorption at temperatures of 25 and 100 °C. It was found that both the type of precursor and the conditions of activation (i.e. impregnation ratios, and activation temperatures), had a huge influence on the microporosity of the resultant samples and their CO2 capture capacities. The carbon-based adsorbent that presented the maximum CO2 capture capacities at 25 and 100 °C (13.8 wt.% and 3.1 wt.%, respectively), was prepared from a pre-consumer carpet waste and was activated at 700 °C using a KOH:char impregnation ratio of 1:1. This sample showed the highest narrow microporosity volume (0.47 cm3 g−1), thus confirming that only pores of less than 1 nm are effective for CO2 adsorption at atmospheric pressure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号