Sequential coupling of high-density luffa sponge (HDLS) immobilized microorganism and permeable reactive barriers (IM Bio-PRBs) was superior to intimate coupling of free microorganism and permeable reactive barriers (FM Bio-PRBs) for remediation of 1,1,1-trichloroethane contaminated groundwater. IM Bio-PRBs had much better performance to removal 1,1,1-trichloroethane (1,1,1-TCA) and prevent the transport of 1,1,1-TCA and inorganic ions (NO3?, PO43?, and SO42?). The majority of them were prevented and accumulated in upgradient of IM Bio-PRBs. 1,1,1-TCA and inorganic ions in there contributed to the much faster growth of microorganism in upgradient aquifer. Therefore, the removal of 1,1,1-TCA and consumption of inorganic ions in upgradient of Bio-PRBs played a constructive role in reducing the processing load of following zero-valent iron (ZVI) PRBs and the negative effect of free microorganism cells (biological clogging) and inorganic ions (chemical clogging) on Bio-PRB permeability. In addition, IM Bio-PRBs were more conducive to accelerate the removal of 1,1,1-TCA in long-term remediation and 1,1,1-TCA residual concentration significantly lower than the safety standard of 0.2 mg L?1. The change of terminal by-products of 1,1,1-TCA contaminated groundwater in Bio-PRBs showed that 1,1,1-TCA could be effectively de-chlorinated and mineralized in Bio-PRBs. The reductant H2S (prolong the service life of ZVI-PRBs) was much more produced and utilized in IM Bio-PRBs. Taken together, sequentially coupled IM Bio-PRBs had a better overall performance, and its service life could be prolonged. It was a different design and idea to update conventional PRB remediation technology and theory.
Simultaneous effect of inorganic anions, such as chloride and bicarbonate ions, on the scavenging of hydroxyl radicals (HO*) in the H2O2/UV process is the focus of this paper. The model compound of n-chlorobutane (BuCl) was used as the probe of HO*. By changing the pH conditions (2-9) and the concentrations of NaCl (0.25-2500 mM) and NaHCO3 (25 mM), the variation of HO* concentrations and the rate of H2O2 decomposition were compared. In general, the BuCl and H2O2 follow closely the first-order reaction within the first 10 and 40 min, respectively. In the presence of chloride alone at the pH range of 2-6, the HO* concentration in the reaction mixture increases with the increase of pH, and the HO* concentration at pH = 6 is 100 times of that at pH = 2. Including bicarbonate species in the solution, the peak HO* concentration was found at a certain pH, which shifts from 4, 5, to 5-7, as the molar ratios of chloride/bicarbonate species increase from 1 to 100. In addition, without bicarbonate species HO* concentration decreases significantly with increasing chloride concentration but remained rather unchanged beyond 1250 mM. In contrast, the HO* scavenging in the presence of bicarbonate species became relatively significant only when the chloride concentration reached beyond 250 mM. Throughout all experiments of different water quality conditions, the H2O2 decomposition rate remains rather unchanged. 相似文献
This paper reports the influences of the herbicide butachlor (n-butoxymethlchloro -2', 6'-diethylacetnilide) on microbial populations, respiration, nitrogen fixation and nitrification, and on the activities of dehydrogenase and hydrogen peroxidase in paddy soil. The results showed that the number of actinomycetes declined significantly after the application of butachlor at different concentrations ranging from 5.5 microg g(-1) to 22.0 microg g(-1) dried soil, while that of bacteria and fungi increased. Fungi were easily affected by butachlor compared to the bacteria. The growth of fungi was retarded by butachlor at higher concentrations. Butachlor however, stimulated the growth of anaerobic hydrolytic fermentative bacteria, sulfate-reducing bacteria (SRB) and denitrifying bacteria. The increased concentration of butachlor applied resulted in the higher number of SRB. Butachlor inhibited the growth of hydrogen-producing acetogenic bacteria. The effect of butachlor varied on methane-producing bacteria (MPB) at different concentrations. Butachlor at the concentration of 1.0 microg g(-1) dried soil or less than this concentration accelerated the growth of MPB, while at 22.0 microg g(-1) dried soil showed an inhibition. Butachlor enhanced the activity of dehydrogenase at increasing concentrations. The soil dehydrogenase showed the highest activity on the 16th day after application of 22.0 microg g(-1) dried soil of butachlor. The hydrogen peroxidase could be stimulated by butachlor. The soil respiration was depressed during the period from several days to more than 20 days, depending on concentrations of butachlor applied. Both the nitrogen fixation and nitrification were stimulated in the beginning but reduced greatly afterwards in paddy soil. 相似文献
A novel electrocatalysis method for phenol degradation was described using a β-PbO2 anode modified with fluorine resin and a Ni–Cr–Ti alloy cathode. In case of air sparging at the cathodic zone, the techniques of anodic–cathodic electrocatalysis (ACEC) and ferrous ion catalyzed anodic–cathodic electrocatalysis (FACEC) in the presence of iron(II) were developed. Both of ACEC and FACEC were more effective than anodic electrocatalysis (AEC). The percentage of phenol eliminated by FACEC could increase by nearly 30% compared with that of AEC, and the current efficiency could reach to 70%. Important operating factors such as ferrous ion concentration, air-sparging rate and applied current were investigated and it was found that such beneficial effects could be achieved at a suitable current and ratio of the concentration of ferrous ion to the air sparged. The mechanism of phenol degradation is proposed to be the generation of hydroxyl radicals concerned with the two electrodes. Results also indicated that the process provided an efficient way to regenerate ferrous ion compared with the conventional Fenton's system. 相似文献
Aquatic hypoxia caused by eutrophication may lead to mass mortality of valuable living resources such as fish and shrimp. However, there is little information on the hypoxic tolerance of penaeid shrimp, and whether they are able to avoid hypoxia. In laboratory experiments, LC50, LT50 and heart beats per minute were determined for juvenile Metapenaeus ensis at 0.5, 1.0, 2.0 and 6.0 mg O2 l(-1). The 8-h LC50, for DO was 0.77 mg O2 l(-1), while the LT50 at 0.5 mg O2 l(-1) was 399 min. Heart beat rate significantly declined when DO fell below 1.0 mg O2 l(-1). When confronted with a gradient of dissolved oxygen, M. ensis were able to avoid hypoxic areas and move to oxygenated water. M. ensis appeared to be sensitive to hypoxia, and their ability to detect and avoid hypoxia may enhance their survival in habitats where hypoxia may occur. 相似文献