首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1227篇
  免费   455篇
  国内免费   101篇
安全科学   114篇
废物处理   42篇
环保管理   88篇
综合类   826篇
基础理论   242篇
污染及防治   322篇
评价与监测   43篇
社会与环境   46篇
灾害及防治   60篇
  2025年   7篇
  2024年   30篇
  2023年   48篇
  2022年   79篇
  2021年   91篇
  2020年   85篇
  2019年   67篇
  2018年   69篇
  2017年   88篇
  2016年   82篇
  2015年   69篇
  2014年   96篇
  2013年   85篇
  2012年   99篇
  2011年   82篇
  2010年   95篇
  2009年   88篇
  2008年   81篇
  2007年   84篇
  2006年   58篇
  2005年   37篇
  2004年   22篇
  2003年   26篇
  2002年   23篇
  2001年   37篇
  2000年   36篇
  1999年   28篇
  1998年   16篇
  1997年   12篇
  1996年   13篇
  1995年   9篇
  1994年   16篇
  1993年   11篇
  1992年   5篇
  1991年   1篇
  1990年   2篇
  1989年   3篇
  1988年   3篇
排序方式: 共有1783条查询结果,搜索用时 29 毫秒
11.
Environmental Science and Pollution Research - In the process of water treatment, excessive nitrogen and phosphorus pollutants are of great concern. Therefore, we prepared nanoscale zerovalent iron...  相似文献   
12.
Environmental Science and Pollution Research - The pollution of heavy metals (HMs) in the soil has become one of the important factors affecting the national environment and human health....  相似文献   
13.
Environmental Science and Pollution Research - Inland freshwater lakes have been widely considered as significant sources of CO2 to the atmosphere. However, long-term measurements of CO2 dynamics...  相似文献   
14.
Environmental Science and Pollution Research - Due to the merits of their high adsorption and convenient separation, magnetic graphene-based composites have become a promising adsorbent in terms of...  相似文献   
15.
Environmental Science and Pollution Research - Hydrothermal liquefaction (HTL) of biomass used HTL reaction under high temperature and pressure to produce bio-oil. This technology is considered as...  相似文献   
16.
Sorption of naphthalene and phenanthrene by soil humic acids   总被引:26,自引:0,他引:26  
Humic acids are a major fraction of soil organic matter (SOM), and sorption of hydrophobic organic chemicals by humic acids influences their behavior and fate in soil. A clear understanding of the sorption of organic chemicals by humic acids will help to determine their sorptive mechanisms in SOM and soil. In this paper, we determined the sorption of two hydrophobic organic compounds, naphthalene and phenanthrene by six pedogenetically related humic acids. These humic acids were extracted from different depths of a single soil profile and characterized by solid-state CP/MAS 13C nuclear magnetic resonance (NMR). Aromaticity of the humic acids increased with soil depth. Similarly, atomic ratios of C/H and C/O also increased with depth (from organic to mineral horizons). All isotherms were nonlinear. Freundlich exponents (N) ranged from 0.87 to 0.95 for naphthalene and from 0.86 to 0.92 for phenanthrene. The N values of phenanthrene were consistently lower than naphthalene for a given humic acid. For both compounds, N values decreased with increasing aromaticity of the humic acids, such an inverse relationship was never reported before. These results support the dual-mode sorption model where partitioning occurs in both expanded (flexible) and condensed (rigid) domains while nonlinear sorption only in condensed domains of SOM. Sorption in the condensed domains may be a cause for slow desorption, and reduced availability and toxicity with aging.  相似文献   
17.
Adsorption of cadmium (Cd) and phosphate by oxides or soils has been extensively studied, but the adsorption/desorption kinetics and mutual effects of these two species in co-existing systems has received little attention. In this study, a batch equilibration method was used to investigate the effect of phosphate and its application time on Cd adsorption and desorption on goethite. The influence of Cd and its application time on phosphate sorption and desorption kinetics was also determined. For Cd adsorption, phosphate was introduced into the system by two sequences: pre-treating goethite at 40 (degrees)C for 1 week, and applying with Cd simultaneously. Similarly, for phosphate sorption, Cd was applied by pre-treating goethite at 40 (degrees)C for 1 week or simultaneous addition with phosphate. Results demonstrated that phosphate added to goethite enhanced Cd adsorption, and facilitated Cd release as compared to untreated goethite. Cadmium had slightly higher adsorption, but a significantly faster desorption rate from the goethite simultaneously treated with phosphate and Cd, as compared to phosphate-pretreated goethite. Cadmium and its application time had little impact on phosphate sorption by goethite. However, phosphate desorption kinetics was affected by Cd application time. When the sorption time was short (15 min), phosphate desorption was faster from the goethite that was simultaneously treated with phosphate and Cd, as compared to Cd pretreated or untreated goethite. In contrast, a longer sorption time (4 weeks) resulted in a higher desorption rate of phosphate from Cd pretreated goethite than simultaneously phosphate-Cd treated goethite. This study provided useful information on adsorption/desorption kinetics in complicated Cd-phosphate-goethite systems.  相似文献   
18.
Part V—sorption of pharmaceuticals and personal care products   总被引:5,自引:0,他引:5  
Background, aim, and scope  Pharmaceuticals and personal care products (PPCPs) including antibiotics, endocrine-disrupting chemicals, and veterinary pharmaceuticals are emerging pollutants, and their environmental risk was not emphasized until a decade ago. These compounds have been reported to cause adverse impacts on wildlife and human. However, compared to the studies on hydrophobic organic contaminants (HOCs) whose sorption characteristics is reviewed in Part IV of this review series, information on PPCPs is very limited. Thus, a summary of recent research progress on PPCP sorption in soils or sediments is necessary to clarify research requirements and directions. Main features  We reviewed the research progress on PPCP sorption in soils or sediments highlighting PPCP sorption different from that of HOCs. Special function of humic substances (HSs) on PPCP behavior is summarized according to several features of PPCP–soil or sediment interaction. In addition, we discussed the behavior of xenobiotic chemicals in a three-phase system (dissolved organic matter (DOM)–mineral–water). The complexity of three-phase systems was also discussed. Results  Nonideal sorption of PPCPs in soils or sediments is generally reported, and PPCP sorption behavior is relatively a more complicated process compared to HOC sorption, such as the contribution of inorganic fractions, fast degradation and metabolite sorption, and species-specific sorption mechanism. Thus, mechanistic studies are urgently needed for a better understanding of their environmental risk and for pollution control. Discussion  Recent research progress on nonideal sorption has not been incorporated into fate modeling of xenobiotic chemicals. A major reason is the complexity of the three-phase system. First of all, lack of knowledge in describing DOM fractionation after adsorption by mineral particles is one of the major restrictions for an accurate prediction of xenobiotic chemical behavior in the presence of DOM. Secondly, no explicit mathematical relationship between HS chemical–physical properties, and their sorption characteristics has been proposed. Last but not least, nonlinear interactions could exponentially increase the complexity and uncertainties of environmental fate models for xenobiotics. Discussion on proper simplification of fate modeling in the framework of nonlinear interactions is still unavailable. Conclusions  Although the methodologies and concepts for studying HOC environmental fate could be adopted for PPCP study, their differences should be highly understood. Prediction of PPCP environmental behavior needs to combine contributions from various fractions of soils or sediments and the sorption of their metabolites and different species. Recommendations and perspectives  More detailed studies on PPCP sorption in separated soil or sediment fractions are needed in order to propose a model predicting PPCP sorption in soils or sediments based on soil or sediment properties. The information on sorption of PPCP metabolites and species and the competition between them is still not enough to be incorporated into any predictive models.  相似文献   
19.
At a former wood preservation plant severely contaminated with coal tar oil, in situ bulk attenuation and biodegradation rate constants for several monoaromatic (BTEX) and polyaromatic hydrocarbons (PAH) were determined using (1) classical first order decay models, (2) Michaelis–Menten degradation kinetics (MM), and (3) stable carbon isotopes, for o-xylene and naphthalene. The first order bulk attenuation rate constant for o-xylene was calculated to be 0.0025 d− 1 and a novel stable isotope-based first order model, which also accounted for the respective redox conditions, resulted in a slightly smaller biodegradation rate constant of 0.0019 d− 1. Based on MM-kinetics, the o-xylene concentration decreased with a maximum rate of kmax = 0.1 µg/L/d. The bulk attenuation rate constant of naphthalene retrieved from the classical first order decay model was 0.0038 d− 1. The stable isotope-based biodegradation rate constant of 0.0027 d− 1 was smaller in the reduced zone, while residual naphthalene in the oxic part of the plume further downgradient was degraded at a higher rate of 0.0038 d− 1. With MM-kinetics a maximum degradation rate of kmax = 12 µg/L/d was determined. Although best fits were obtained by MM-kinetics, we consider the carbon stable isotope-based approach more appropriate as it is specific for biodegradation (not overall attenuation) and at the same time accounts for the dominant electron-accepting process. For o-xylene a field based isotope enrichment factor εfield of − 1.4 could be determined using the Rayleigh model, which closely matched values from laboratory studies of o-xylene degradation under sulfate-reducing conditions.  相似文献   
20.
Intent of this study was to explore the potential application of polymerin, the polymeric, dissolved organic matter fraction from olive oil wastewaters, in technologies aimed at remediating hydrophobic organic compounds (HOCs) point-source pollution. Phenanthrene binding with polymerin was investigated. Moreover, the effect of addition of micro and nanoscale aluminum oxides (Al2O3) was studied, as well as sorption of polymerin on the oxides. Phenanthrene binding capacity by polymerin was notably higher than the sorption capacities for both types of Al2O3 particles. Polymerin sorption on nanoparticles was nearly 100 times higher than microparticles. In a three-phase system, using microparticles, higher phenanthrene sorption was found by adding into water polymerin, oxides and phenanthrene simultaneously. In contrast, using nanoparticles, a considerable enhancement of phenanthrene sorption was shown by adding phenanthrene to a pre-formed and dried polymerin-oxide complex. These findings support the application of polymerin, especially associated with Al2O3 nanoparticles, in remediation of water contaminated with HOCs. This work highlights the significant role of nanoparticles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号