首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7790篇
  免费   528篇
  国内免费   3094篇
安全科学   713篇
废物处理   460篇
环保管理   606篇
综合类   4606篇
基础理论   1277篇
环境理论   2篇
污染及防治   2699篇
评价与监测   382篇
社会与环境   327篇
灾害及防治   340篇
  2024年   32篇
  2023年   184篇
  2022年   477篇
  2021年   452篇
  2020年   401篇
  2019年   331篇
  2018年   364篇
  2017年   469篇
  2016年   485篇
  2015年   533篇
  2014年   636篇
  2013年   827篇
  2012年   714篇
  2011年   692篇
  2010年   528篇
  2009年   491篇
  2008年   517篇
  2007年   490篇
  2006年   387篇
  2005年   266篇
  2004年   207篇
  2003年   238篇
  2002年   197篇
  2001年   172篇
  2000年   181篇
  1999年   197篇
  1998年   173篇
  1997年   163篇
  1996年   146篇
  1995年   99篇
  1994年   105篇
  1993年   73篇
  1992年   49篇
  1991年   37篇
  1990年   22篇
  1989年   17篇
  1988年   10篇
  1987年   7篇
  1986年   7篇
  1985年   3篇
  1984年   7篇
  1983年   6篇
  1982年   7篇
  1981年   7篇
  1980年   1篇
  1978年   2篇
  1977年   1篇
  1975年   1篇
  1957年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
521.
The stability of CuO nanoparticles (NPs) is expected to play a key role in the environmental risk assessment of nanotoxicity in aquatic systems. In this study, the effect of alginate (model polysaccharides) on the stability of CuO NPs in various environmentally relevant ionic strength conditions was investigated by using time-resolved dynamic light scattering. Significant aggregation of CuO NPs was observed in the presence of both monovalent and divalent cations. The critical coagulation concentrations (CCC) were 54.5 and 2.9 mM for NaNO3 and Ca(NO3)2, respectively. The presence of alginate slowed nano-CuO aggregation rates over the entire NaNO3 concentration range due to the combined electrostatic and steric effect. High concentrations of Ca2+ (>6 mM) resulted in stronger adsorption of alginate onto CuO NPs; however, enhanced aggregation of CuO NPs occurred simultaneously under the same conditions. Spectroscopic analysis revealed that the bridging interaction of alginate with Ca2+ might be an important mechanism for the enhanced aggregation. Furthermore, significant coagulation of the alginate molecules was observed in solutions of high Ca2+ concentrations, indicating a hetero-aggregation mechanism between the alginate-covered CuO NPs and the unabsorbed alginate. These results suggested a different aggregation mechanism of NPs might co-exist in aqueous systems enriched with natural organic matter, which should be taken into consideration in future studies.
Graphical abstract Hetero-aggregation mechanism of CuO nanoparticles and alginate under high concentration of Ca2+
  相似文献   
522.
The electro-Fenton (EF) process treatment of 0.1-M (rhodamine B) RhB solution was studied with different graphite cathode materials, and graphite felt (GF) was selected as a promising material in further investigation. Then, the degradation performances of gas diffusion electrode (GDE) and graphite felt (GF) were compared, and GDE was confirmed to be more efficient in RhB removal. The operational parameters such as Fe2+ dosage and current density were optimized, and comparison among different modified methods—polytetrafluoroethylene-carbon black (PTFE-CB), polytetrafluoroethylene-carbon nanotube (PTFE-CNT), electrodeposition-CB, and electrodeposition-CNT—showed 98.49 % RhB removal by PTFE-CB-modified cathode in 0.05 M Na2SO4 at a current density of 50 A/m2 and an air flow rate of 1 L/min after 20 min. Meanwhile, after cathode modified by PTFE-CB, the mineralization efficiency and mineralization current efficiency performed absolutely better than the pristine one. Cyclic voltammograms, SEM images, contact angles, and BET surface area were carried out to demonstrate stronger current responses and higher hydrophilicity of GF after modified. The value of biochemical oxygen demand/chemical oxygen demand (BOD5/COD) increased from 0.049 to 0.331 after 90-min treatment, suggesting the solution was biodegradable, and the modified cathode was confirmed to be stable after ten circle runs. Finally, a proposed degradation pathway of RhB was put forward.  相似文献   
523.
Microbe-assisted phytoremediation provides an effective approach to clean up heavy metal-contaminated soils. However, severe drought may affect the function of microbes in arid/semi-arid areas. Streptomyces pactum Act12 is a drought-tolerant soil actinomycete strain isolated from an extreme environment on the Qinghai-Tibet Plateau, China. In this study, pot experiments were conducted to assess the effect of Act12 on Cd tolerance, uptake, and accumulation in amaranth (Amaranthus hypochondriacus) under water deficit. Inoculated plants had higher Cd concentrations (root 8.7–33.9 %; shoot 53.2–102.1 %) and uptake (root 19.9–95.3 %; shoot 110.6–170.1 %) than non-inoculated controls in Cd-treated soil. The translocation factor of Cd from roots to shoots was increased by 14.2–75 % in inoculated plants, while the bioconcentration factor of Cd in roots and shoots was increased by 10.2–64.4 and 53.9–114.8 %, respectively. Moreover, inoculation with Act12 increased plant height, root length, and shoot biomass of amaranth in Cd-treated soil compared to non-inoculated controls. Physiochemical analysis revealed that Act12 enhanced Cd tolerance in the plants by increasing glutathione, elevating superoxide dismutase and catalase activities, as well as reducing malondialdehyde content in the leaves. The drought-tolerant actinomycete strain Act12 can enhance the phytoremediation efficiency of amaranth for Cd-contaminated soils under water deficit, exhibiting potential for application in arid and semi-arid areas.  相似文献   
524.
A simple online headspace solid-phase microextraction (HS-SPME) coupled with the gas chromatography-mass spectrometry (GC-MS) method was developed for simultaneous determination of trace amounts of nine estrogenic odorant alkylphenols and chlorophenols and their derivatives in water samples. The extraction conditions of HS-SPME were optimized including fiber selection, extraction temperature, extraction time, and salt concentration. Results showed that divinylbenzene/Carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fiber was the most appropriate one among the three selected commercial fibers, and the optimal extraction temperature, time, and salt concentration were 70 °C, 30 min, and 0.25 g/mL, respectively. The developed method was validated and showed good linearity (R 2?>?0.989), low limit of detection (LOD, 0.002–0.5 μg/L), and excellent recoveries (76–126 %) with low relative standard deviation (RSD, 0.7–12.9 %). The developed method was finally applied to two surface water samples and some of these target compounds were detected. All these detected compounds were below their odor thresholds, except for 2,4,6-TCAS and 2,4,6-TBAS wherein their concentrations were near their odor thresholds. However, in the two surface water samples, these detected compounds contributed to a certain amount of estrogenicity, which seemed to suggest that more attention should be paid to the issue of estrogenicity rather than to the odor problem.  相似文献   
525.

Wastewater treatment plants (WWTPs) have been recognized as important sources for anthropogenic greenhouse gas (GHG) emission. The objective of the study was to thoroughly investigate a typical industrial WWTP in southern Taiwan in winter and summer which possesses the emission factors close to those reported values, with the analyses of emission factors, mass fluxes, fugacity, lab-scale in situ experiments, and impact assessment. The activated sludge was the important source in winter and summer, and nitrous oxide (N2O) was the main contributor (e.g., 57 to 91 % of total GHG emission in a unit of kg carbon dioxide-equivalent/kg chemical oxygen demand). Albeit important for the GHGs in the atmosphere, the fractional contribution of the GHG emission to the carbon or nitrogen removal in wastewater treatment was negligible (e.g., less than 1.5 %). In comparison with the sludge concentration or retention time, adjusting the aeration rate was more effective to diminish the GHG emission in the activated sludge without significantly affecting the treated water quality. When the aeration rate in the activated sludge simulation was reduced by 75 %, the mass flux of N2O could be diminished by up to 53 % (from 9.6 to 4.5 mg/m2-day). The total emission in the WWTP (including carbon dioxide, methane, and N2O) would decrease by 46 % (from 0.67 to 0.36 kg CO2-equiv/kg COD). However, the more important benefit of changing the aeration rate was lowering the energy consumption in operation of the WWTP, as the fractional contribution of pumping to the total emission from the WWTP ranged from 46 to 93 % within the range of the aeration rate tested. Under the circumstance in which reducing the burden of climate change is a global campaign, the findings provide insight regarding the GHG emission from treatment of industrial wastewater and the associated impact on the treatment performance and possible mitigation strategies by operational modifications.

  相似文献   
526.
Environmental Science and Pollution Research - Improved understanding of the fractionation and geochemical characteristic of rare earth elements (REEs) from steel plant emissions is important due...  相似文献   
527.
As one of China’s great metropolises, Taiyuan is affected by heavy chemical industry and manufacture of chemical products, and faces pollution from polychlorinated biphenyls (PCBs). Therefore, this study was conducted to determine the PCB concentrations in various environmental media in Taiyuan. We collected 15 soil samples, 34 respirable particulate matter (PM) samples (17 of PM2.5 and 17 of PM10) from urban areas of Taiyuan, and measured a total of 144 PCB congeners (including some coeluting PCB congeners). The total PCB concentrations were 51–4.7 × 103 pg g−1 in soil, 27–1.4 × 102 pg m−3 in PM2.5 and 16–1.9 × 102 pg m−3 in PM10. Of the PCB homologues, the dominant PCBs detected in the various media were all tri-CBs. Soil was relatively the most polluted media. Furthermore, principal-component analysis revealed that the major PCB source in Taiyuan may be associated with the main commercial PCB through long-range transmission. Toxic equivalency (TEQ) concentrations (based on ten dioxin-like PCBs) ranged from N.D. to 5.9 × 10−3 pg-WHO TEQ g−1 in soil, 2.0 × 10−4–3.4 × 10−3 pg-WHO TEQ m−3 and 1.0 × 10−4–1.2 × 10−3 pg-WHO TEQ m−3 in PM2.5 and PM10, respectively. In previous studies, PCBs were not a severe component of contaminant in Taiyuan; however, this study suggested there is a potential threat of human exposure to PCBs for residents of Taiyuan.  相似文献   
528.
Background, aim and scope

In the region of the Apuseni Mountains, part of the Western Carpathians in Romania, metal mining activities have a long-standing tradition. These mining industries created a clearly beneficial economic development in the region. But their activities also caused impairments to the environment, such as acid mine drainage (AMD) resulting in long-lasting heavy metal pollution of waters and sediments. The study, established in the context of the ESTROM programme, investigated the impact of metal mining activities both from environmental and socioeconomic perspectives and tried to incorporate the results of the two approaches into an integrated proposition for mitigation of mining-related issues.

Study site

The small Certej catchment, situated in the Southern Apuseni Mountains, covers an area of 78 km2. About 4,500 inhabitants are living in the basin, in which metal mining was the main economic sector. An open pit and several abandoned underground mines are producing heavy metal-loaded acidic water that is discharged untreated into the main river. The solid wastes of mineral processing plants were deposited in several dumps and tailings impoundment embodying the acidic water-producing mineral pyrite.

Methods

The natural science team collected samples from surface waters, drinking water from dug wells and from groundwater. Filtered and total heavy metals, both after enrichment, and major cations were analysed by inductively coupled plasma optical emission spectroscopy (ICP-OES). Major anions in waters, measured by ion chromatography, alkalinity and acidity were determined by titration. Solid samples were taken from river sediments and from the largest tailings dam. The latter were characterised by X-ray fluorescence and X-ray diffraction. Heavy metals in sediments were analysed after digestion. Simultaneously, the socioeconomic team performed a household survey to evaluate the perception of people related to the river and drinking water pollution by way of a logistic regression analysis.

Results and discussion

The inputs of acid mine waters drastically increased filtered heavy metal concentrations in the Certej River, e.g. Zn up to 130 mg L−1, Fe 100 mg L−1, Cu 2.9 mg L−1, Cd 1.4 mgL−1 as well as those of SO4 up to 2.2 g L−1. In addition, river water became acidic with pH values of pH 3. Concentrations of pollutant decreased slightly downstream due to dilution by waters from tributaries. Metal concentrations measured at headwater stations reflect background values. They fell in the range of the environmental quality standards proposed in the EU Water Framework Directive for dissolved heavy metals. The outflow of the large tailing impoundment and the groundwater downstream from two tailings dams exhibited the first sign of AMD, but they still had alkalinity.

Most dug wells analysed delivered a drinking water that exhibited no sign of AMD pollution, although these wells were a distance of 7 to 25 m from the contaminated river. It seems that the Certej River does not infiltrate significantly into the groundwater.

Pyrite was identified as the main sulphide mineral in the tailings dam that produces acidity and with calcite representing the AMD-neutralising mineral. The acid–base accounting proved that the potential acid-neutralising capacity in the solid phases would not be sufficient to prevent the production of acidic water in the future. Therefore, the open pits and mine waste deposits have to be seen as the sources for AMD at the present time, with a high long-term potential to produce even more AMD in the future.

The socioeconomic study showed that mining provided the major source of income. Over 45% of the households were partly or completely reliant on financial compensations as a result of mine closure. Unemployment was considered by the majority of the interviewed persons as the main cause of social problems in the area. The estimation of the explanatory factors by the logistic regression analysis revealed that education, household income, pollution conditions during the last years and familiarity with environmental problems were the main predictors influencing peoples’ opinion concerning whether the main river is strongly polluted. This model enabled one to predict correctly 77% of the observations reported. For the drinking water quality model, three predictors were relevant and they explained 66% of the observations.

Conclusions

Coupling the findings from the natural science and socioeconomic approaches, we may conclude that the impact of mining on the Certej River water is high, while drinking water in wells is not significantly affected. The perceptions of the respondents to pollution were to a large extent consistent with the measured results.

Recommendations and perspectives

The results of the study can be used by various stakeholders, mainly the mining company and local municipalities, in order to integrate them in their post-mining measures, thereby making them aware of the potential long-term impact of mining on the environment and on human health as well as on the local economy.

  相似文献   
529.
重金属元素在冻土与融土中迁移的对比试验   总被引:1,自引:0,他引:1  
随着寒区经济的发展,冻土地区的矿山开采活动不断加剧,随之产生的重金属污染问题也越来越严重.冻土地区生态环境脆弱,一旦受到破坏就很难恢复.针对此问题,室内模拟了尾矿矿渣在冻土与融土中的填埋及其对填埋场周边土体的影响,通过检测填埋场各处土壤的温度、含水量以及重金属元素的含量,发现温度和水分对重金属元素的迁移影响很大.土壤温度越低,重金属元素的迁移越慢;在温度梯度的作用下,重金属元素均随着水分从土体的暖端向冷端迁徙并聚集于冻结锋面.重金属元素在冻土中的迁移比融土中慢,表明冻土环境不利于重金属元素的迁移.在土壤质地、温度和含水量等相同的情况下,Zn的迁移性较强,Pb和Cu的迁移性相对较弱.  相似文献   
530.
粗马铃薯多酚氧化酶固定于丝素/SiO2杂化膜上,从而得到丝素/SiO2杂化膜固定化多酚氧化酶.并用于处理模拟含酚废水.丝素/SiO2杂化膜在水中的溶失率小于丝素膜在水中的溶失率.所得丝素/SiO2杂化膜固定化多酚氧化酶的最适宜pH为7.4.相对于游离多酚氧化酶.该酶具有较好的热稳定性、贮存稳定性及重复使用性.研究表明,丝素/SiO2杂化膜固定化多酚氧化酶有实际处理含酚废水的可能.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号