In this work the synergistic effects of several microwave assisted advanced oxidation processes (MW/AOPs) were studied for the degradation of 4-chlorophenol (4-CP). The efficiencies of the degradation of 4-CP in dilute aqueous solution for a variety of AOPs with or without MW irradiation were compared. The results showed that the synergistic effects between MW and H2O2, UV/H2O2, TiO2 photocatalytic oxidation (PCO) resulted in a high degradation efficiency for 4-CP. The potential of MW/AOPs for treatment of industrial wastewater is discussed. 相似文献
The electro-Fenton (EF) process treatment of 0.1-M (rhodamine B) RhB solution was studied with different graphite cathode materials, and graphite felt (GF) was selected as a promising material in further investigation. Then, the degradation performances of gas diffusion electrode (GDE) and graphite felt (GF) were compared, and GDE was confirmed to be more efficient in RhB removal. The operational parameters such as Fe2+ dosage and current density were optimized, and comparison among different modified methods—polytetrafluoroethylene-carbon black (PTFE-CB), polytetrafluoroethylene-carbon nanotube (PTFE-CNT), electrodeposition-CB, and electrodeposition-CNT—showed 98.49 % RhB removal by PTFE-CB-modified cathode in 0.05 M Na2SO4 at a current density of 50 A/m2 and an air flow rate of 1 L/min after 20 min. Meanwhile, after cathode modified by PTFE-CB, the mineralization efficiency and mineralization current efficiency performed absolutely better than the pristine one. Cyclic voltammograms, SEM images, contact angles, and BET surface area were carried out to demonstrate stronger current responses and higher hydrophilicity of GF after modified. The value of biochemical oxygen demand/chemical oxygen demand (BOD5/COD) increased from 0.049 to 0.331 after 90-min treatment, suggesting the solution was biodegradable, and the modified cathode was confirmed to be stable after ten circle runs. Finally, a proposed degradation pathway of RhB was put forward. 相似文献
Journal of Material Cycles and Waste Management - Existing management standards in China for mercury waste classification and disposal and those of the Minamata Convention on Mercury (the... 相似文献
This study evaluated the individual and interactive effect of phenol and thiocyanate (SCN−) on partial nitritation (PN) activity using batch test and response surface methodology. The IC50 of phenol and SCN− on PN sludge were 5.6 and 351 mg L−1, respectively. The PN sludge was insensitive to phenol and SCN− at levels lower than 1.77 and 43.3 mg L−1, respectively. A regression model equation was developed and validated to predict the relative specific respiration rate (RSRR) of PN sludge exposed to different phenol and SCN− concentrations. In the range of independent variables, the most severe inhibition was observed with a valley value (17%) for RSRR, when the phenol and SCN− concentrations were 4.08 and 198 mg L−1, respectively. An isobole plot was used to judge the combined toxicity of phenol and SCN−, and the joint inhibitory effect was variable depending on the composition and concentration of the toxic components. Furthermore, the toxic compounds showed independent effects, which is the most common type of combined toxicity.