首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20253篇
  免费   597篇
  国内免费   2069篇
安全科学   832篇
废物处理   870篇
环保管理   2016篇
综合类   6920篇
基础理论   4272篇
环境理论   7篇
污染及防治   5026篇
评价与监测   1466篇
社会与环境   1245篇
灾害及防治   265篇
  2023年   188篇
  2022年   497篇
  2021年   462篇
  2020年   435篇
  2019年   383篇
  2018年   473篇
  2017年   535篇
  2016年   627篇
  2015年   605篇
  2014年   859篇
  2013年   1568篇
  2012年   941篇
  2011年   1069篇
  2010年   858篇
  2009年   895篇
  2008年   975篇
  2007年   873篇
  2006年   856篇
  2005年   701篇
  2004年   627篇
  2003年   653篇
  2002年   613篇
  2001年   746篇
  2000年   536篇
  1999年   363篇
  1998年   254篇
  1997年   243篇
  1996年   241篇
  1995年   235篇
  1994年   229篇
  1993年   176篇
  1992年   200篇
  1991年   192篇
  1990年   186篇
  1989年   153篇
  1988年   168篇
  1987年   96篇
  1986年   136篇
  1985年   128篇
  1984年   127篇
  1983年   116篇
  1982年   128篇
  1981年   122篇
  1979年   100篇
  1978年   105篇
  1976年   92篇
  1974年   105篇
  1972年   90篇
  1967年   100篇
  1964年   92篇
排序方式: 共有10000条查询结果,搜索用时 539 毫秒
921.
An indicator of the disturbance of natural systems, the landscape development intensity (LDI) index, was used to assess the potential for land-use within watersheds to influence the production/accumulation of methyl-mercury (MeHg) in river sediments. Sediment samples were collected from locations impacted by well-identified land-use types within the Mobile-Alabama River Basin in Southeastern USA. The samples were analyzed for total-Hg (THg) and MeHg concentrations and the obtained values correlated to the calculated LDI indexes of the sampled watersheds to assess the impact of prevalent land use/land cover on MeHg accumulation in sediments. The results show that unlike THg, levels of MeHg found in sediments are impacted by the LDI indexes. Overall, certain combinations of land-use types within a given watershed appear to be more conducive to MeHg accumulation than others, therefore, pointing to the possibility of targeting land-use practices as potential means for reducing MeHg accumulation in sediments, and ultimately, fish contamination.  相似文献   
922.
923.
924.
Zinc oxide nanoparticles (ZnO NPs) are used in an array of products and processes, ranging from personal care products to antifouling paints, textiles, food additives, antibacterial agents and environmental remediation processes. Soils are an environment likely to be exposed to manmade nanoparticles due to the practice of applying sewage sludge as a fertiliser or as an organic soil improver. However, understanding on the interactions between soil properties, nanoparticles and the organisms that live within soil is lacking, especially with regards to soil bacterial communities. We studied the effects of nanoparticulate, non-nanoparticulate and ionic zinc (in the form of zinc chloride) on the composition of bacterial communities in soil with a modified pH range (from pH 4.5 to pH 7.2). We observed strong pH-dependent effects on the interaction between bacterial communities and all forms of zinc, with the largest changes in bacterial community composition occurring in soils with low and medium pH levels (pH 4.8 and 5.9). The high pH soil (pH 7.2) was less susceptible to the effects of zinc exposure. At the highest doses of zinc (2500 mg/kg dw soil), both nano and non-nano particulate zinc applications elicited a similar response in the soil bacterial community, and this differed significantly to the ionic zinc salt treatment. The results highlight the importance of considering soil pH in nanotoxicology studies, although further work is needed to determine the exact mechanisms controlling the toxicity and fate and interactions of nanoparticles with soil microbial communities.  相似文献   
925.
Demand for green energy production is arising all over the world. A lot of emphasis is laid in making the buildings green. Even a small amount of energy savings made contribute to saving the environment. In this study, an idea is proposed and studied to extract power from the high head water in the pipelines of a building. A building of height 15 m is considered for this study. Water flowing in the pipe has sufficient energy to run a micro hydro turbine. The feasibility of producing electrical energy from the energy of pipe water is found. The motivation is to find the feasibility of generating power using a low-cost turbine. The experimental setup consists of micro turbine of 135 mm diameter coupled to a 12-V DC generator; LEDs and resistors are employed to validate the results. The theoretical calculations were presented using the fundamental equations of fluid mechanics. The theoretical results are validated using experimental and numerical results using CFD simulation. In addition, exergy analysis has been carried out to quantify the irreversibilities during the process in the system.  相似文献   
926.
Climatic condition, geology, and geochemical processes in an area play a major role on groundwater quality. Impact of these on the fluoride content of groundwater was studied in three regions—part of Nalgonda district in Telangana, Pambar River basin, and Vaniyar River basin in Tamil Nadu, southern India, which experience semi-arid climate and are predominantly made of Precambrian rocks. High concentration of fluoride in groundwater above 4 mg/l was recorded. Human exposure dose for fluoride through groundwater was higher in Nalgonda than the other areas. With evaporation and rainfall being one of the major contributors for high fluoride apart from the weathering of fluoride rich minerals from rocks, the effect of increase in groundwater level on fluoride concentration was studied. This study reveals that groundwater in shallow environment of all three regions shows dilution effect due to rainfall recharge. Suitable managed aquifer recharge (MAR) methods can be adopted to dilute the fluoride rich groundwater in such regions which is explained with two case studies. However, in deep groundwater, increase in fluoride concentration with increase in groundwater level due to leaching of fluoride rich salts from the unsaturated zone was observed. Occurrence of fluoride above 1.5 mg/l was more in areas with deeper groundwater environment. Hence, practicing MAR in these regions will increase the fluoride content in groundwater and so physical or chemical treatment has to be adopted. This study brought out the fact that MAR cannot be practiced in all regions for dilution of ions in groundwater and that it is essential to analyze the fluctuation in groundwater level and the fluoride content before suggesting it as a suitable solution. Also, this study emphasizes that long-term monitoring of these factors is an important criterion for choosing the recharge areas.  相似文献   
927.
928.
929.
Hydroponic root mats for wastewater treatment—a review   总被引:2,自引:0,他引:2  
Hydroponic root mats (HRMs) are ecotechnological wastewater treatment systems where aquatic vegetation forms buoyant filters by their dense interwoven roots and rhizomes, sometimes supported by rafts or other floating materials. A preferential hydraulic flow is created in the water zone between the plant root mat and the bottom of the treatment system. When the mat touches the bottom of the water body, such systems can also function as HRM filter; i.e. the hydraulic flow passes directly through the root zone. HRMs have been used for the treatment of various types of polluted water, including domestic wastewater; agricultural effluents; and polluted river, lake, stormwater and groundwater and even acid mine drainage. This article provides an overview on the concept of applying floating HRM and non-floating HRM filters for wastewater treatment. Exemplary performance data are presented, and the advantages and disadvantages of this technology are discussed in comparison to those of ponds, free-floating plant and soil-based constructed wetlands. Finally, suggestions are provided on the preferred scope of application of HRMs.  相似文献   
930.
Lignite (PK), bituminous (FI) and biomass (SE) fly ashes (FAs) were mineralogically and geochemically characterised, and their element leachability was studied with batch leaching tests. The potential for acid neutralisation (ANP) was quantified by their buffering capacity, reflecting their potential for neutralisation of acid mine drainage. Quartz was the common mineral in FAs detected by XRD with iron oxide, anhydrite, and magnesioferrite in PK, mullite and lime in FI, and calcite and anorthite in SE. All the FAs had high contents of major elements such as Fe, Si, Al and Ca. The Ca content in SE was six and eight times higher compared to PK and FI, respectively. Sulphur content in PK and SE was one magnitude higher than FI. Iron concentrations were higher in PK. The trace element concentrations varied between the FAs. SE had the highest ANP (corresponding to 275 kg CaCO3?tonne?1) which was 15 and 10 times higher than PK and FI, respectively. The concentrations of Ca2+, SO4 2?, Na+ and Cl? in the leachates were much higher compared to other elements from all FA samples. Iron, Cu and Hg were not detected in any of the FA leachates because of their mild to strong alkaline nature with pH ranging from 9 to 13. Potassium leached in much higher quantity from SE than from the other ashes. Arsenic, Mn and Ni leached from PK only, while Co and Pb from SE only. The concentrations of Zn were higher in the leachates from SE. The FAs used in this study have strong potential for the neutralisation of AMD due to their alkaline nature. However, on the other hand, FAs must be further investigated, with scaled-up experiments before full-scale application, because they might leach pronounced concentrations of elements of concern with decreasing pH while neutralising AMD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号