The interaction of nanoplastics (NPls) and engineered nanoparticles (ENPs) with organic matter and environmental pollutants is particularly important. Therefore, their behavior should be investigated under the different salinity conditions, mimicking rivers and coastal environments, to understand this phenomenon in those areas. In this work, we analyzed the elementary characteristics of polystyrene-PS (unmodified surface and modified with amino or carboxyl groups) and titanium dioxide-TiO2 nanoparticles. The effect of salinity on their colloidal properties was studied too. Also, the interaction with different types of proteins (bovine serum albumin-BSA and tilapia proteins), as well as the formation of the BSA corona and its effect on the colloidal stability of nanoparticles, were evaluated. The morphology and dispersion of sizes were more uniform in unmodified-surface PS-NPs (70.5?±?13.7 nm) than in TiO2-NPs (131.2?±?125.6 nm). Likewise, Rama spectroscopy allowed recognizing peaks associated with the PS phenyl group aromatic ring in unmodified-surface PS-NPs (621, 1002, 1582, and 1602 cm?1). For TiO2-NPs, the data suggest belonging to the tetragonal form, also known as rutile (445, 610 cm?1). The elevation of salinity dose-dependently decreased NP colloid stability, with more significant variation in the PS-NPs compared to TiO2-NPs. The organic matter is also involved in this phenomenon, differentially as a function of time compared to its absence (unmodified-surface PS-NPs 30 psu/TOC 5 mgL?1/24 h: 2876.6?±?378.03 nm; unmodified-surface PS-NPs 30 psu/24 h: 2133?±?49.57 nm). In general, the TiO2-NPs demonstrated greater affinity with all proteins tested (0.066 g/L). It was observed that morphology, size, and surface chemical modification intervene in a relevant way in the interaction of the nanoparticles with bovine serum albumin (unmodified-surface PS-NPs 298 K: 6.08E+02; 310 K: 6.63E+02; TiO2-NPs 298 K: 8.76E+02; 310 K: 1.05E+03 L mol?1) and tilapia tissues proteins (from blood, gills, liver, and brain). Their morphology and size also determined the protein corona formation and the NPs’ agglomeration. These findings can provide references during knowledge transfer between NPls and ENPs.
The levels of metals in sediments of urban river ecosystems are crucial for aquatic environmental health and pollution assessment. Yet little is known about the interaction of nutrients with metals for environmental risks under contamination accumulation. Here, we combined hierarchical cluster, correlation, and principal component analysis with structural equation model (SEM) to investigate the pollution level, source, toxicity risk, and interaction associated with metals and nutrients in the sediments of a river network in a city area of East China. The results showed that the pollution associated with metals in sediments was rated as moderate degree of contamination load and medium-high toxicity risk in the middle and downstream of urban rivers based on contamination factor, pollution load index, and environmental toxicity quotient. The concentration of mercury (Hg) and zinc (Zn) showed a significant correlation with toxic risks, which had more contribution to toxicity than other metals in the study area. Organic nitrogen and organic pollution index showed heavily polluted sediments in south of the study area. Though correlation analysis indicated that nutrients and metals had different input zones from anthropogenic sources in the urban river network, SEM suggested that nutrient accumulation indirectly intensified toxicity risk of metals by 13.6% in sediments. Therefore, we suggested the combined consideration of metal toxicity risk with nutrient accumulation, which may provide a comprehensive understanding to identify sediment pollution.
Environmental Science and Pollution Research - The prevalence of gestational diabetes mellitus (GDM) is increasing worldwide. Reports of the association between air pollution exposure and GDM have... 相似文献
Environmental Science and Pollution Research - Hydrothermal liquefaction (HTL) of biomass used HTL reaction under high temperature and pressure to produce bio-oil. This technology is considered as... 相似文献
Advancements in technology are inextricably bound to our society and the natural environment. However, how the development process of a technology system interacts with both remains unclear. We propose a process model to understand the complex dynamics among technology, society, and the environment via seven interactive elements: technologies, actors, receiving bodies, natural contexts, social contexts, temporal–spatial contexts, and outcomes. The model was applied to agricultural and water technology development in China from 8000 bc to 1911 ad. Our findings show that these elements did not play equally important roles in different periods of the development in ancient China, with social contexts most dominating during the earlier periods and both social and environmental concerns arising towards the later periods. The proposed model, by identifying the elements in the technology development that should be strengthened, can act as an analysis device to assist in reconfiguring a more sustainable socio-technological system.Electronic supplementary materialThe online version of this article (10.1007/s13280-020-01424-7) contains supplementary material, which is available to authorized users. 相似文献
The photocatalytic oxidation of oxalyldihydrazide, N,N'-bis(hydrazocarbonyl)hydrazide, N,N'-bis(ethoxycarbonyl)hydrazide, malonyldihydrazide, N-malonyl-bis[(N'-ethoxycarbonyl)hydrazide] was examined in aqueous TiO2 dispersions under UV illumination. The photomineralization of nitrogen and carbon atoms in the substrates into N2 gas, NH4+ (and/or NO3-) ions, and CO2 gas was determined by HPLC and GC analysis. The formation of carboxylic acid intermediates also occurred in the photooxidation process. The photocatalytic mechanism is discussed on the basis of the experimental results, and with molecular orbital (MO) simulation of frontier electron density and point charge. Substrate carbonyl groups readily adsorb on the TiO2 surface, and the bonds between carbonyl group carbon atoms and adjacent hydrazo group nitrogen atoms are cleaved predominantly in the initial photooxidation process. The hydrazo groups were photoconverted mainly into N2 gas (in mineralization yields above 70%) and partially to NH4 ions (below 10%). The formation of NO3- ions was scarcely recognized. 相似文献
Environmental Science and Pollution Research - Co3O4 nanorods with diameters of ~0.15 μm and lengths of ~1 μm were prepared using a hydrothermal method via the assembly of microcrystals... 相似文献
Environmental Science and Pollution Research - Groundwater resource is significantly important for sustainable development of the world, especially for arid endorheic watersheds. A total of 28... 相似文献
Environmental Science and Pollution Research - Coal mine pollution is a serious threat to the mine safe production and occupational health of miners. Chemical dust suppression can effectively... 相似文献
Environmental Science and Pollution Research - Increasing research suggested that green spaces are associated with many health benefits, but evidence for the quantitative relationship between green... 相似文献