首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31447篇
  免费   355篇
  国内免费   473篇
安全科学   988篇
废物处理   1483篇
环保管理   3852篇
综合类   5262篇
基础理论   8181篇
环境理论   18篇
污染及防治   8320篇
评价与监测   2133篇
社会与环境   1847篇
灾害及防治   191篇
  2023年   142篇
  2022年   328篇
  2021年   339篇
  2020年   251篇
  2019年   297篇
  2018年   513篇
  2017年   512篇
  2016年   776篇
  2015年   620篇
  2014年   932篇
  2013年   2473篇
  2012年   1101篇
  2011年   1499篇
  2010年   1233篇
  2009年   1257篇
  2008年   1490篇
  2007年   1544篇
  2006年   1310篇
  2005年   1124篇
  2004年   1030篇
  2003年   1101篇
  2002年   993篇
  2001年   1278篇
  2000年   875篇
  1999年   526篇
  1998年   361篇
  1997年   378篇
  1996年   370篇
  1995年   444篇
  1994年   457篇
  1993年   355篇
  1992年   380篇
  1991年   361篇
  1990年   394篇
  1989年   352篇
  1988年   298篇
  1987年   282篇
  1986年   225篇
  1985年   252篇
  1984年   267篇
  1983年   259篇
  1982年   250篇
  1981年   231篇
  1980年   178篇
  1979年   197篇
  1978年   178篇
  1975年   143篇
  1974年   117篇
  1972年   131篇
  1971年   132篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
121.
Two chromium removal experiments were performed in bioreactors with and without a magnetic field under the same conditions.The release of the chromium present in the biomass was tested in two experiments one with the initial pH of the medium and one with pH 4.0.The objective was to remove Cr(Ⅵ) and total Cr from the effluent,this was carried out by placing biological treatments of synthetic effluent contaminated with 100 mg/L of Cr(Ⅵ) in a bioreactor with neodymium magnets that applied a magnetic field(intensity85.4 mT) to the mixed culture.The removal of Cr(Ⅵ) was approximately 100.0% for the bioreactor with a magnetic field and 93,3% for the bioreactor without a magnetic field for9 hr of recirculation of the synthetic effluent by the bioreactor.The removal of total Cr was61.6% and 48.4%,with and without a magnetic field,respectively;for 24 hr.The desorption of Cr(VI) in the synthetic effluent was 0.05 mg/L,which is below the limit established by Brazilian legislation(0.1 mg/L) for the discharge of effluent containing Cr(Ⅵ) into bodies of water.The results obtained for the removal of chromium in synthetic effluent suggested that there was no significant influence on the viable cell count of the mixed culture.The desorption of Cr(Ⅵ) in synthetic effluent after bioadsorption of chromium by the mixed culture in the process of removal of chromium in bioreactors with and without a magnetic field was not significant in either of the experiments with different initial pHs.  相似文献   
122.
Ozone (O3), as a harmful air pollutant, has been of wide concern. Safe, efficient, and economical O3 removal methods urgently need to be developed. Catalytic decomposition is the most promising method for O3 removal, especially at room temperature or even subzero temperatures. Great efforts have been made to develop high-efficiency catalysts for O3 decomposition that can operate at low temperatures, high space velocity and high humidity. First, this review describes the general reaction mechanism of O3 decomposition on noble metal and transition metal oxide catalysts. Then, progress on the O3 decomposition performance of various catalysts in the past 30 years is summarized in detail. The main focus is the O3 decomposition performance of manganese oxides, which are divided into supported manganese oxides and non-supported manganese oxides. Methods to improve the activity, stability, and humidity resistance of manganese oxide catalysts for O3 decomposition are also summarized. The deactivation mechanisms of manganese oxides under dry and humid conditions are discussed. The O3 decomposition performance of monolithic catalysts is also summarized from the perspective of industrial applications. Finally, the future development directions and prospects of O3 catalytic decomposition technology are put forward.  相似文献   
123.
The degradation of pharmaceutical micropollutants is an intensifying environmental problem and synthesis of efficient photocatalysts for this purpose is one of the foremost challenges worldwide. Therefore, this study was conducted to develop novel plasmonic Ag/Ag2O/BiVO4 nanocomposite photocatalysts by simple precipitation and thermal decomposition methods, which could exhibit higher photocatalytic activity for mineralized pharmaceutical micropollutants. Among the different treatments, the best performance was observed for the Ag/Ag2O/BiVO4 nanocomposites (5 wt.%; 10 min's visible light irradiation) which exhibited 6.57 times higher photodegradation rate than the pure BiVO4. Further, the effects of different influencing factors on the photodegradation system of tetracycline hydrochloride (TC-HCl) were investigated and the feasibility for its practical application was explored through the specific light sources, water source and cycle experiments. The mechanistic study demonstrated that the photogenerated holes (h+), superoxide radicals (?O2?) and hydroxyl radicals (?OH) participated in TC-HCl removal process, which is different from the pure BiVO4 reaction system. Hence, the present work can provide a new approach for the formation of novel plasmonic photocatalysts with high photoactivity and can act as effective practical application for environmental remediation.  相似文献   
124.
Eighteen polycyclic aromatic hydrocarbons (PAHs) were detected in benthos collected onboard the ‘Snow Dragon’ in the Northern Bering Sea Shelf and Chukchi Sea Shelf during the 6th Chinese National Arctic Research Expedition (CHINARE 2014). Σ18PAHs for all biota samples ranged from 34.2 to 128.1 ng/g dry weight (dw), with the highest concentration observed in fish muscle (Boreogadus saida) samples close to St. Lawrence Island. The PAH composition pattern was dominated by the presence of lighter 3 ring (57%) and 2 ring (28%) PAHs, indicating oil-related or petrogenic sources as important origins of PAH contamination. Concentrations of alkyl-PAHs (1-methylnaphthalene and 2-methylnaphthalene) were lower than their parent PAH (naphthalene) in all biological tissue, and their percentage also decreased significantly (p<0.05) compared with those in the corresponding sediment. There were no significant relationships between PAH concentrations and trophic levels, which is possibly due to the combined results of the complex benthic foodweb in the subarctic/Arctic shelf region, as well as a low assimilation/effective metabolism for PAHs. According to toxic potency evaluation results from TCDD toxic equivalents (TEQs) and BaP-equivalent (BaPE) values, whelk (Neptunea heros) and starfish (Ctenodiscus crispatus) are two macroinvertebrate species showing relatively higher dioxin-like toxicity and carcinogenic risk.  相似文献   
125.
Advanced oxidation technologies are a friendly environmental approach for the remediation of industrial wastewaters. Here, one pot synthesis of mesoporous WO_3 and WO_3-graphene oxide(GO) nanocomposites has been performed through the sol–gel method. Then, platinum(Pt) nanoparticles were deposited onto the WO_3 and WO_3-GO nanocomposite through photochemical reduction to produce mesoporous Pt/WO_3 and Pt/WO_3-GO nanocomposites. X-ray diffraction(XRD) findings exhibit a formation of monoclinic and triclinic WO_3 phases. Transmission Electron Microscope(TEM) images of Pt/WO_3-GO nanocomposites exhibited that WO_3 nanoparticles are obviously agglomerated and the particle sizes of Pt and WO_3 are ~ 10 nm and 20–50 nm, respectively. The mesoporous Pt/WO_3 and Pt/WO_3-GO nanocomposites were assessed for photocatalytic degradation of Methylene Blue(MB) as a probe molecule under visible light illumination.The findings showed that mesoporous Pt/WO_3, WO_3-GO and Pt/WO_3-GO nanocomposites exhibited much higher photocatalytic efficiencies than the pure WO_3. The photodegradation rates by mesoporous Pt/WO_3-GO nanocomposites are 3, 2 and 1.15 times greater than those by mesoporous WO_3, WO_3-GO, and Pt/WO_3, respectively. The key factors of the enhanced photocatalytic performance of Pt/WO_3-GO nanocomposites could be explained by the highly freedom electron transfer through the synergetic effect between WO_3 and GO sheets, in addition to the Pt nanoparticles that act as active sites for O2 reduction, which suppresses the electron hole pair recombination in the Pt/WO_3-GO nanocomposites.  相似文献   
126.
127.
128.
129.
130.
Axenic tissue cultures ofRuppia maritima L. were established and propagated clonally in vitro from terminal rhizome segments collected from Tampa Bay, Florida, USA. Cultures were maintained in a base medium consisting of synthetic seawater supplemented with half-strength Murashige and Skoog salts and 1% sucrose at pH 5.6. The effects of five cytokins [6-furfurylaminopurine (kinetin), 6-benzylaminopurine (BAP), 2-isopentyladenine (2iP), 6-(4-hydroxy-3-methyl-but-2-enylamino) purine (zeatin), andn-phenyl-n-1,2,3-thidiazol-5yl urea (thidiazuron)] and one auxin [napthalene acetic acid (NAA)] on explant growth and development were investigated. Cytokinin additions resulted in a 3- to 4-fold increase in nodal production, branching, and biomass ofR. maritima after 12 wk in culture. Cultures responded in a dose-dependent manner to 2iP but exhibited broad dose-response curves to kinetin, BAP, zeatin, and thidiazuron. NAA addition resulted in increased leaf and internodal lengths, but reduced the number of leaves per node and the rhizome biomass. The addition of NAA almost completely suppressed root growth in media without cytokinins and had an antagonistic effect on nodal production and branching in cytokinin-supplemented media.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号