首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   14篇
  国内免费   10篇
安全科学   5篇
综合类   44篇
污染及防治   2篇
评价与监测   1篇
  2022年   1篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2011年   2篇
  2009年   1篇
  2007年   4篇
  2006年   2篇
  2005年   2篇
  2004年   5篇
  2003年   1篇
  2002年   2篇
  1998年   7篇
  1997年   3篇
  1996年   2篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1981年   1篇
排序方式: 共有52条查询结果,搜索用时 140 毫秒
11.
北京地区夏冬季颗粒物污染边界层的激光雷达观测   总被引:35,自引:4,他引:31  
在对激光雷达测量数据处理方法讨论的基础上,根据"北京空气污染物垂直结构测量试验"(BAPIE)冬季和夏季测量的数据,对北京地区气溶胶高度分布及近地面气溶胶污染边界层指标、气溶胶污染边界层统计特征、气溶胶输送南北通量高度分布、API-Ⅰ级优质大气和Ⅴ级重度污染个例等,进行了讨论。   相似文献   
12.
2014年10月中国东部持续重污染天气成因分析   总被引:11,自引:0,他引:11       下载免费PDF全文
2014年10月5─13日中国东部发生了大范围、长时间的(雾)霾及重污染天气. 采用AQI数据分析此次大气重污染过程的时、空演变特征,并应用NCEP(美国国家环境预报中心)再分析资料以及地面、小球探空数据,分析了主要天气型演变、边界层及上空的风场、气象条件特征,以研究此次秋季重污染天气的气象成因和形成过程. 结果表明:①华北、东北是此次污染最为严重的地区,其域内各城市持续数日的污染演变可分为AQI显著上升、持续高值、下降3个阶段. ②在AQI上升阶段(10月6—8日),受大陆高压控制,东部地区出现较弱地方风场和偏南风输送风场,风速在0~2 m/s,相对湿度在22%~86%,3 000 m逆温显著利于污染物积累. ③在持续污染阶段(10月8—11日),海上高压滞留,再加上台风“凤凰”北上阻挡大陆高压影响,使东部地区出现持续4 d的偏南风、偏东风弱风场,风速在1~4 m/s,相对湿度为57%~96%,造成严重污染. ④在AQI下降阶段(10月11—12日),后续大陆高压南下,前部冷锋利于污染物清除,风速达到6 m/s,是AQI降低的主要天气背景场. 因此,持续出现的稳定天气形势是导致此次中国东部重污染天气的主要气象原因.   相似文献   
13.
北京地区沙尘天气及其影响   总被引:28,自引:0,他引:28       下载免费PDF全文
通过对北京地区1954~2001年气象台站的天气现象的观测资料以及最近几年20多个台站资料的分析.结果表明,北京一年中的沙尘暴主要集中在每年的春季(3~6月份),其中4月份的沙尘暴发生次数为全年最高,约占所有沙尘暴的50%;北京沙尘暴、扬沙和浮尘天气现象发生的频次有减少的趋势;北京地区沙尘天气的发生有一定的周期性变化规律;北京地区主要是以扬沙天气为主,占总沙尘天气的74.15%,其次是浮尘天气(18.09%)和沙尘暴(7.76%);北京地区的沙尘天气在空间分布上不均匀;北京地区沙尘天气现象与天气气候背景、周边和本地地表生态系统、本地建筑工地以及裸露地等有密切的关系;沙尘天气对北京重污染的贡献较大.  相似文献   
14.
土壤有机质矿化与温室气体释放初探   总被引:6,自引:0,他引:6  
通过土壤有机质的矿化2作用,模拟估算温度气体在中国土壤中的释放量,结果表明,CO2从土壤中的释放量为37.5亿t/aCH4从稻田中的释放量为0.20亿t/a,N2O从稻田中的释放量为3.45万t/a,对土壤中温室气体释放估算提供了一种简便方法,由于掌握资料不足,准确估算需进一步研究。  相似文献   
15.
本文在对气候变化与环境生态系统现状进行了广泛调查的基础上,结合国内学者的研究,对近五年我国环境生态系统的演变趋势作了系统的回顾,并提出了保护我国生态系统的对策。  相似文献   
16.
为了反演高分辨率的PM2.5近地面浓度,利用WRF(中尺度气象模型)模拟的大气相对湿度、风速、边界层高度等气象因子对AOD(气溶胶光学厚度)分别进行订正,以逐步提高AOD与近地面ρ(PM2.5)间的相关性;分析不同反演模型的统计学特征,优选反演模型,并利用最优模型反演中国中东部地区2014年年均ρ(PM2.5)的空间分布特征.结果表明:AOD经相对湿度订正后,其与近地面ρ(PM2.5)的相关性显著提高,相关系数达到0.77;同时引入相对湿度、风速2个气象因子,AOD与近地面ρ(PM2.5)的相关系数升至0.79(n=145,P<0.01);同时引入相对湿度、风速和边界层高度3个气象因子,AOD与近地面ρ(PM2.5)的相关系数进一步升至0.80(n=145,P<0.01).模型反演表明,研究区域内ρ(PM2.5)年均值大于35 μg/m3的面积高达334.49×104 km2,占研究区域面积的83.2%,并且高污染地区与人口密度高度重合.分析表明,北京、天津、河北、山东及河南等典型重污染省、直辖市分别有96.30%、100%、78.16%、98.86%、100%面积的ρ(PM2.5)超标,分别约有99.97%、100%、96.41%、98.88%、100%人口生活在空气质量超标地区.   相似文献   
17.
利用2006—2011年PARASOL卫星细模态AOT(aerosol optical thickness,气溶胶光学厚度)的观测值,探讨中国PM0.5浓度的时空分布特征,并对中国与全球PM0.5的空间分布进行对比分析.结果表明:细模态AOT高值出现在中国、非洲中部和南美洲,分别为0.5~1.0、0.4~0.9和0.4~0.6,反映出这些地区PM0.5污染严重.在中国范围内,细模态AOT高值区主要分布在6个区域,包括重庆市、四川省成都市及其周边地区,华北平原地区,湖北省和湖南省的两湖平原地区,广西壮族自治区,珠三角地区,陕西渭河平原以及山西汾河河谷地区,各区域细模态AOT最大值分别为1.1、0.9、1.0、1.0、1.1和0.8,这些PM0.5污染严重地区的分布与SO2、OC、VOC、NOx等的污染源及其排放强度分布特征相一致,并且PM0.5浓度呈逐年升高趋势.2006—2011年,冬、春季细模态AOT平均值升高了18.09%,而夏、秋季平均值升高了9.00%,表明冬、春季PM0.5浓度显著高于夏、秋季.细模态AOT的多年月均值变化表明,其较高值出现在1月、3月,分别为0.37、0.36,最低值(0.18)出现在8月.但在局部地区,如华北地区(115°E~125°E、33°N~42°N),细模态AOT表现为夏季高于冬季.主要原因是华北地区受夏季副热带高压以及太阳辐射的影响,加强了南方污染物的长距离输送以及大气光化学反应,致使该地区夏季PM0.5浓度增高.  相似文献   
18.
区域大气污染数值模拟方法研究   总被引:3,自引:1,他引:2       下载免费PDF全文
大气污染是一个区域性的环境污染问题,北京大气环境的质量与周边地区污染源的排放有密切关系.将气象模型高级区域预报系统(ARPS)与空气污染模型Models-3耦合进行模拟计算,从检验结果可以看出,模拟值与实测值有较好的一致性,表明该模式系统可以用来研究区域大气污染物传输及相互影响.模拟计算了2002年北京地区各季ρ(PM10)以及山西污染源对北京的贡献,结果表明,在特殊的天气条件下的典型时段,尤其是在西南风气流场控制下,山西污染源对北京空气质量有较大的影响.比较而言,夏季(8月)山西污染源的平均贡献率最大,约为15.44%;冬季(1月)最小,约为2.25%.表明控制北京大气污染不容忽视周边污染源的影响.   相似文献   
19.
北京地区一次重污染过程的大尺度天气型分析   总被引:32,自引:11,他引:21  
对北京2000年11月的一次PM10重污染过程进行分析,以期进行造成PM10质量浓度增量的天气型诊断.结果表明:最不利于污染扩散的气象形势对应着PM10质量浓度增量最大,而不一定是PM10质量浓度达到最高的环境背景场;PM10质量浓度的峰值是逐步累积而成的.提出定义PM10质量浓度从谷值逐日累积到峰值而后重新下降到谷值的状态为一次环境污染过程.根据环境过程与天气型的诊断分析结果认为,PM10质量浓度变化与天气形势演变有较好的对应关系.PM10质量浓度在上升、达到峰值和下降阶段对应的天气形势分别为持续数日的大陆高压均压场、相继出现的低压均压区及锋后的高气压梯度场,其中持续存在的大陆高压均压场是造成重污染浓度累积的主要背景场.   相似文献   
20.
利用EP/TOMS遥感资料分析我国上空沙尘天气过程   总被引:6,自引:1,他引:5  
利用EP/TOMS卫星遥感资料,并结合地面气象观测记录,分析了影响我国典型沙尘暴天气的发生、发展和传输过程.定义了使用EP/TOMS气溶胶指数定量描述沙尘天气强度的指标体系,并对1998年3-4月间发生的沙尘天气的强度及其演变进行了详细的分析.结果表明:利用EP/TOMS 气溶胶指数并结合气象观测资料,可以对大规模的沙尘天气进行及时判别、监视,并预报影响范围及传输路径;同时,利用TOMS气溶胶指数建立起来的指标体系可以半定量化地描述沙尘暴天气的强度和影响范围.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号