全文获取类型
收费全文 | 844篇 |
免费 | 64篇 |
国内免费 | 165篇 |
专业分类
安全科学 | 141篇 |
废物处理 | 24篇 |
环保管理 | 91篇 |
综合类 | 538篇 |
基础理论 | 118篇 |
污染及防治 | 98篇 |
评价与监测 | 27篇 |
社会与环境 | 18篇 |
灾害及防治 | 18篇 |
出版年
2024年 | 11篇 |
2023年 | 27篇 |
2022年 | 34篇 |
2021年 | 37篇 |
2020年 | 31篇 |
2019年 | 37篇 |
2018年 | 38篇 |
2017年 | 31篇 |
2016年 | 28篇 |
2015年 | 29篇 |
2014年 | 57篇 |
2013年 | 16篇 |
2012年 | 44篇 |
2011年 | 40篇 |
2010年 | 41篇 |
2009年 | 27篇 |
2008年 | 39篇 |
2007年 | 46篇 |
2006年 | 74篇 |
2005年 | 29篇 |
2004年 | 29篇 |
2003年 | 38篇 |
2002年 | 29篇 |
2001年 | 16篇 |
2000年 | 26篇 |
1999年 | 19篇 |
1998年 | 17篇 |
1997年 | 22篇 |
1996年 | 23篇 |
1995年 | 9篇 |
1994年 | 26篇 |
1993年 | 19篇 |
1992年 | 16篇 |
1991年 | 12篇 |
1990年 | 15篇 |
1989年 | 5篇 |
1988年 | 6篇 |
1987年 | 4篇 |
1986年 | 5篇 |
1985年 | 3篇 |
1984年 | 3篇 |
1983年 | 8篇 |
1982年 | 3篇 |
1980年 | 1篇 |
1979年 | 2篇 |
1978年 | 1篇 |
排序方式: 共有1073条查询结果,搜索用时 15 毫秒
991.
采用浸渍法和嫁接法分别将1-丁基-3-甲基咪唑双三氟甲烷磺酰亚胺盐([Bmim]TFSI)、丙基三辛基鏻四氟硼酸盐([P(C3H7)(C8H17)3]BF4)和丙基三辛基鏻双三氟甲烷磺酰亚胺盐([P(C3H7)(C8H17)3]TFSI)负载于活性炭上。对产物进行了热重和孔结构分析,并以气相甲苯和二甲苯为代表物,研究了其对芳香烃的静态和动态吸附性能。研究结果表明:活性炭经离子液体改性后,能显著提高其对芳香烃的吸附性能;其中 [P(C3H7)(C8H17)3]TFSI和[P(C3H7)(C8H17)3]BF4)浸渍改性活性炭的甲苯静态吸附量较大,分别为782 mg/g和777 mg/g (25 ℃,0.1 MPa);[P(C3H7)(C8H17)3]BF4浸渍改性活性炭对于3种二甲苯异构体的吸附量最大,且排序依次为邻二甲苯>间二甲苯>对二甲苯。吸附动力学研究表明,在较高的甲苯初始浓度和较低的气体流量下,[P(C3H7)(C8H17)3]TFSI浸渍改性活性炭具有更好的吸附性能。 相似文献
992.
993.
以锐钛型纳米二氧化钛为催化剂,研究了Ti O2投加量、底物初始浓度、溶液的p H值、光源种类以及降解时间等因素对废水中邻苯二甲酸二(2-乙基)己酯(DEHP)光催化降解的影响。研究结果表明,DEHP的光催化降解率随着纳米Ti O2投加量的增加先增大后减小,纳米Ti O2的最佳投加量为0. 30 g/L。随着DEHP初始浓度的增大,DEHP的光催化降解率减小,当DEHP初始浓度小于50 mg/L时,降解率降幅较小,而当DEHP初始浓度大于50 mg/L后,降解率急剧减小。随着p H的增大,DEHP的光催化降解率先增大后减小,呈现单峰型,当p H为7时,DEHP的降解率达到最大,酸性和碱性条件下,均不利于DEHP的光催化降解。紫外光照射下,DEHP光催化降解率有了大幅提高,降解率大小顺序为η(UVC)>η(UVB)>η(UVA); DEHP的紫外光催化降解符合一级动力学方程,降解半衰期为2. 15~25. 99 h。 相似文献
994.
GC-MS测定土壤中酞酸酯类化合物 总被引:2,自引:2,他引:2
采用毛细管柱气相色谱-质谱联用选择离子检测(GC-MS-SIM)技术,结合快速萃取和佛罗里硅土柱净化方法分析土壤中的六种酞酸酯类(PAEs)化合物。结果表明,六种PAEs峰形好,平均加标回收率为76.7%~110%,相对标准偏差为2.5%~4.5%。方法具有操作简便、回收率高、纯化效果好和对环境友好的特点,且具有很强的实用性。 相似文献
995.
996.
997.
我国钢铁企业数量众多、工序复杂,地下水常受到有机物、重金属等有毒有害物质的影响。目前针对钢铁联合企业地下水污染特征及防治对策研究较少。以我国不同地区5家典型钢铁企业为例,评价各案例中场地地下水脆弱性及选址合理性,识别各企业地下水特征污染源,分析污染方式及程度,提出对污染防治对策的几点认识。结果表明:历史上钢铁企业选址往往忽略水文地质条件因素,跑冒滴漏、装置泄漏及淋滤作用是地下水的主要污染方式,加强选址论证、地下管线防护、固废处置及废水利用是保护钢铁工业地下水的重要措施。 相似文献
998.
以闽江河口区塔礁洲河岸分布的短叶茳芏(Cyperus malaccensis)淡水感潮沼泽湿地及其比邻的光滩为研究对象,通过采集土芯和土壤-植物连续体,构建中型生态系统(Mesocosm),并2016年12月—2017年10月模拟持续恒定盐度增加及波动短期盐度增加两种情景,测定间隙水溶解性甲烷(CH_4)浓度及其它理化因子,探讨持续恒定和短期波动盐度增加对河口淡水感潮湿地间隙水溶解性CH_4浓度的影响.结果表明:①2种处理均显著抑制了短叶茳芏沼泽及光滩湿地间隙水溶解性CH_4浓度,波动盐度对于短叶茳芏湿地间隙水溶解性CH_4浓度的抑制效果明显高于光滩;②恒定盐度及波动盐度增加主要通过提高间隙水SO_4~(2-)、Cl~-、NH~+_4-N和TN浓度,降低间隙水pH值,抑制间隙水溶解性CH_4浓度;③短叶茳芏沼泽间隙水溶解性CH_4浓度受间隙水pH值影响最为显著,而光滩间隙水溶解性CH_4浓度则受间隙水NH~+_4-N浓度及气温影响显著.研究表明,未来盐水入侵情景下,河口淡水感潮湿地间隙水溶解性CH_4浓度将下降,且在盐度短期增加情景下,河口淡水感潮沼泽湿地间隙水溶解性CH_4浓度下降幅度大于光滩湿地. 相似文献
999.
为评估东北湖区湖泊生态安全,在山口湖流域水质特征分析的基础上,分别采用模糊综合评价法、层次分析法和DPSIR(驱动力-压力-状态-影响-响应)模型对山口湖流域水环境质量、陆域生态系统健康状况和流域生态安全进行综合评估.结果表明:①2014年山口湖水体氮、磷、有机物质量浓度较低,各月营养水平存在较大波动:3月冰封期ρ(TN)、ρ(TP)和ρ(CODMn)最低,分别为0.681、0.022、6.31 mg/L;5月冰层溶解时ρ(TN)和ρ(CODMn)最高,分别为1.771、8.27 mg/L.在3条入湖河流中,长水河受生活源和农业面源污染较重,ρ(TN)年均值为2.244 mg/L,超出GB 3838-2002《地表水环境质量标准》Ⅴ类标准限值;南水河污染较轻,ρ(TN)、ρ(TP)平均值分别为1.061、0.059 mg/L;土鲁木河受人类活动影响较小,污染最轻.②模糊综合评价结果显示,除5月外,2014年山口湖水体总体上处于GB 3838-2002 Ⅲ类水质.③1988-2014年山口湖陆域生态系统处于优秀状态,但健康指数由1988年的90.06降至2014年的87.63,森林覆盖率下降、农田比例增加是陆域生态系统健康状态下降的主要原因.④2014年山口湖流域生态安全指数值为72.61,处于较安全状态,经济发展水平落后、入湖污染物未有效控制、透明度低、水产品供给指标功能较差、污染物处理能力差是影响山口湖生态安全的主要因素.研究显示,需减少农田化肥施用量,加强农村和农业面源污染防治等措施,控制污染物入湖量,加强环境监管能力建设和科技支撑,提高山口湖流域生态安全状态. 相似文献
1000.
生物炭具有比表面积大、孔隙度高、表面官能团丰富等优点,在灰水处理方面有较大的应用潜力。介绍了灰水的水质水量特点及常见处理技术,重点对生物炭的性质、改性方法以及生物炭基质在灰水处理方面的国内外应用研究进展进行了综述,并分析了生物炭的再生性能。结果表明:目前应用于灰水处理的生物炭大多是木质源生物炭,木质源生物炭pH处于碱性范围,具有大比表面积、高孔隙度等优点,其比表面积和孔隙度大多数在0~520 m2/g和48%~83%;众多改性方法中,金属盐生物炭改性的研究较多,采用该方法改性后提高了生物炭的吸附能力,并使其磁化从而方便后期的分离回收;生物炭基质多应用于人工湿地、绿墙等生态处理系统进行灰水处理,在最优运行条件下对灰水中有机物、营养物质的去除率均能达到90%,具有良好的应用前景。最后对生物炭在灰水处理应用中存在的问题进行了总结,并从加强新污染物去除、生物炭再生及节能减耗3个方面对未来研究进行了展望。
相似文献