全文获取类型
收费全文 | 418篇 |
免费 | 47篇 |
国内免费 | 110篇 |
专业分类
安全科学 | 66篇 |
废物处理 | 17篇 |
环保管理 | 35篇 |
综合类 | 311篇 |
基础理论 | 60篇 |
污染及防治 | 39篇 |
评价与监测 | 17篇 |
社会与环境 | 9篇 |
灾害及防治 | 21篇 |
出版年
2024年 | 6篇 |
2023年 | 14篇 |
2022年 | 14篇 |
2021年 | 8篇 |
2020年 | 25篇 |
2019年 | 21篇 |
2018年 | 16篇 |
2017年 | 15篇 |
2016年 | 12篇 |
2015年 | 16篇 |
2014年 | 24篇 |
2013年 | 16篇 |
2012年 | 30篇 |
2011年 | 16篇 |
2010年 | 21篇 |
2009年 | 29篇 |
2008年 | 22篇 |
2007年 | 22篇 |
2006年 | 21篇 |
2005年 | 13篇 |
2004年 | 16篇 |
2003年 | 24篇 |
2002年 | 20篇 |
2001年 | 11篇 |
2000年 | 16篇 |
1999年 | 23篇 |
1998年 | 15篇 |
1997年 | 12篇 |
1996年 | 5篇 |
1995年 | 21篇 |
1994年 | 6篇 |
1993年 | 7篇 |
1992年 | 3篇 |
1991年 | 3篇 |
1990年 | 3篇 |
1989年 | 4篇 |
1988年 | 3篇 |
1987年 | 3篇 |
1986年 | 4篇 |
1985年 | 5篇 |
1984年 | 3篇 |
1983年 | 2篇 |
1982年 | 2篇 |
1980年 | 2篇 |
1979年 | 1篇 |
排序方式: 共有575条查询结果,搜索用时 15 毫秒
141.
最近中国环境科学学会常务理事,国家科委环境专业组副组长郭方同志应河南省开封市环境科学学会的邀请,乘参加河南省环办主持召开的《含三氯乙醛废水处理研究》技术鉴定会之标,做了题为《赴澳大利亚考察访问的报告》。报告分为三个部分。一、赴澳大利亚考察人和动物营养微量元素与环境情况考察组由中国科学院环境科学委员会组织,于1982年10月31日起对澳大利亚进行21天的访问。考察地区是堪培拉及南澳 相似文献
142.
143.
144.
以北京昌平区某地大气PM_(2.5)和重金属污染状况为研究对象,应用射线法与XRF技术相结合的分析技术,对PM_(2.5)浓度和其重金属组分浓度进行同步监测,以重金属元素为污染物示踪因子进行污染特征分析。结果表明,监测期间该区域PM_(2.5)平均质量浓度达92μg/m~3,Ca、Fe、K元素含量较高。通过主成分分析该区域PM_(2.5)元素影响因素主要为工业和生活燃料燃烧、冶金工业废气、扬尘3类,贡献比分别为52.42%、26.82%、13.10%。 相似文献
145.
146.
147.
武汉市与西安市颗粒物PM_(10)、PM_(2.5)的污染水平分析 总被引:1,自引:0,他引:1
利用武汉、西安两市2013年PM10与PM2.5的监测数据,统计分析了武汉市和西安市PM10与PM2.5的污染水平,并比较了两城市的污染水平。根据GB 3095—2012《中华人民共和国环境空气质量标准》规定的二级浓度限值,可知武汉市和西安市PM2.5的污染都非常严重,PM10的污染相对较轻。从整体上说,西安市的污染水平要比武汉市严重,其中西安市PM10中PM2.5约占79%。武汉市和西安市的相关部门都应重视PM10和PM2.5的污染问题。 相似文献
148.
149.
为了控制区域酸沉降污染,需要制定科学的区域大气酸沉降控制目标.本研究建立了应用VSD动态模型的多点位模拟和累积频率分布曲线统计方法,通过模拟各酸沉降情景下某一目标年区域内土壤理化特性的变化确定其酸沉降控制目标.将此方法应用于广州-东莞-惠州地区,在现场测量区域内25点位土壤特征的基础上,应用VSD模型模拟各点位土壤特征对酸沉降的响应,再将模拟结果绘制成累积频率分布曲线,据此确定该区域酸沉降控制目标.结果表明,单独控制S沉降时,若使得该区域生态保护率达到80%,则短期和长期S沉降的控制目标分别为7.68~12g/(m2×a)和10.24~16g/(m2×a);若生态保护率为95%,短期和长期S沉降控制目标分别为5.12~8g/(m2×a)和7.68~12g/(m2×a).同时控制S和BC沉降时,若生态保护率为80%,当BC沉降为6.4~12.8g/(m2×a)时,短期和长期S的控制目标分别为2.56~4g/(m2×a)和5.12~8g/(m2×a);当BC沉降为4.8~9.6g/(m2×a)时,S的控制目标为2.56~4g/(m2×a).若生态保护率为95%,当BC沉降为6.4~12.8g/(m2×a)时,短期和长期S的控制目标分别为0.64~1g/(m2×a)和5.12~8g/(m2×a);当BC沉降为4.8~9.6g/(m2×a)时,短期和长期S的控制目标分别为0.64~1g/(m2×a)和2.56~4g/(m2×a);当BC沉降量降至2~4g/(m2×a),则80%和95%生态保护率下的S控制目标均为0.64~1g/(m2×a). 相似文献
150.
亚热带典型小流域磷收支及流失特征对比研究 总被引:3,自引:1,他引:3
磷素(P)在环境中的过量累积是导致农业面源污染的主要因素。论文以湖南省长沙县脱甲河农区小流域(52 km2)和涧山河森林-农区小流域(50 km2)为研究单元,基于入户调查资料和连续4 a的流域把口站水文水质定位观测数据,采用物质流分析法,对比研究了亚热带丘陵区典型小流域P的收支平衡及流失特征。结果表明,农区小流域出口地表水总磷(TP)含量变化为0.03~0.68 mg·L-1,平均含量为0.21 mg·L-1,整体达到Ⅲ类水质标准;森林-农区小流域TP含量变化范围为0.01~0.35 mg·L-1,平均为0.08 mg·L-1,整体为Ⅱ类水质,表明森林-农区小流域地表水水质明显优于农区小流域。农区小流域P的环境滞留强度(32.0 kg·hm-2·a-1)显著高于森林-农区小流域(20.6 kg·hm-2·a-1),对环境影响更大。以2013年为例,农区小流域P的主要输入项为饲料,占53.1%,森林-农区小流域则以肥料为主,占53.0%;两个流域的P输出项都以植物和畜禽产品输出为主,均占总输出量的94.0%左右。控制小流域肥料和饲料投入、增加循环利用途径以及提高P利用率是当前减轻水体富营养化的有效途径。 相似文献