首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
  国内免费   8篇
环保管理   1篇
综合类   14篇
基础理论   5篇
  2020年   1篇
  2017年   1篇
  2015年   3篇
  2014年   1篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2000年   2篇
  1996年   1篇
  1980年   1篇
  1975年   1篇
排序方式: 共有20条查询结果,搜索用时 312 毫秒
11.
Polybrominated diphenyl ethers (PBDEs) have been widely used as fire-retardants. Due to their high production volume, widespread usage, and environmental persistence, PBDEs have become ubiquitous contaminants in various environments.Nanoscale zero-valent iron (ZVI) is an effective reductant for many halogenated organic compounds. To enhance the degradation efficiency, ZVI/Palladium bimetallic nanoparticles (nZVI/Pd) were synthesized in this study to degrade decabromodiphenyl ether (BDE209) in water. Approximately 90% of BDE209 was rapidly removed by nZVI/Pd within 80 min, whereas about 25% of BDE209 was removed by nZVI. Degradation of BDE209 by nZVI/Pd fits pseudo-first-order kinetics. An increase in pH led to sharply decrease the rate of BDE209 degradation. The degradation rate constant in the treatment with initial pH at 9.0 was more than 6.8 × higher than that under pH 5.0. The degradation intermediates of BDE209 by nZVI/Pd were identified and the degradation pathways were hypothesized. Results from this study suggest that nZVI/Pd may be an effective tool for treating polybrominated diphenyl ethers (PBDEs) in water.  相似文献   
12.
This initial research examined the presence, distribution and bioavailability of Cu, Cr, Ni, Mn and Fe in a wetland area of southern Guam. The research sites are within an area covered with saporite, a soil type derived from volcanic deposits on the island. Leaf tissue of Pandanus tectorius was extracted and analysed to determine the bioaccumulation of the target metals. Metal accumulation at sites considered aerobic and anaerobic was investigated together with an attempt to correlate actual accumulation of the target metals in the plant tissue with a recognised bioavailability indicator, in this case, three step sequential extraction scheme. Manganese was found to be accumulated in relatively high concentrations and to a lesser extent Cu was also accumulated. Chromium, Ni and Fe however exhibited very low accumulation factors. Accumulation of Mn in particular was significantly a ected by aerobic conditions whereas the converse e ect was experienced by Cu. Significant correlation between various steps of a Sequential Extraction Scheme and actual accumulation was not achieved although the degree of aerobic conditions at each site and soil pH did a ect concentrations of metals extracted by di ering steps of SES. Results obtained suggest that further research in the area should be undertaken using di erent plant species and tissues.  相似文献   
13.
The effect of sulfur dioxide (SO2) on the formation of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) has been studied in an entrained-flow reactor (EFR) under simulated waste combustion conditions. A chlorination model based on conditional probability was employed to evaluate the homologue patterns of PCDDs and PCDFs. Results revealed that the presence of SO2 did not alter the formation pathway although SO2 suppressed PCDD/F formation. The prediction model of PCDF showed good agreement with the experimental data (R--0.95), whereas the prediction for PCDDs did not correlate well with the experimental data. This may be explained because potential chlorination pathways play a significant role in PCDF formation, whereas PCDDs are mainly formed through condensation reactions. Furthermore, the result indicated that the steric hindrance during formation has more effects on PCDD than on PCDF due to the symmetric molecular structures of PCDDs.  相似文献   
14.
Biodegradation of polycyclic aromatic hydrocarbons (PAHs) is normally limited by their low solubility and poor bioavailability. Prior research suggests that biosurfactants are synthesized as intermediates during the production of mucilage at the root tip. To date the effects of mucilage on PAH degradation and microbial community response have not been directly examined. To address this question, our research compared 3 cowpea breeding lines (Vigna unguiculata) that differed in mucilage production for their effects on phenanthrene (PHE) degradation in soil. The High Performance Liquid Chromatography results indicated that the highest PHE degradation rate was achieved in soils planted with mucilage producing cowpea line C1, inoculated with Bradyrhizobium, leading to 91.6% PHE disappearance in 5 weeks. In root printing tests, strings treated with mucilage and bacteria produced larger clearing zones than those produced on mucilage treated strings with no bacteria or bacteria inoculated strings. Experiments with 14C-PHE and purified mucilage in soil slurry confirmed that the root mucilage significantly enhanced PHE mineralization (82.7%), which is 12% more than the control treatment without mucilage. The profiles of the PHE degraders generated by Denaturing gradient gel electrophoresis suggested that cowpea C1, producing a high amount of root mucilage, selectively enriched the PHE degrading bacteria population in rhizosphere. These findings indicate that root mucilage may play a significant role in enhancing PHE degradation and suggests that differences in mucilage production may be an important criterion for selection of the best plant species for use in phytoremediation of PAH contaminated soils.  相似文献   
15.
Understanding antibiotic biodegradation is important to the appreciation of their fate and removal from the environment. In this research an Isotope Ratio Mass Spectrometry(IRMS)method was developed to evaluate the extent of biodegradation of the antibiotic,sulphanilamide, in contaminated groundwater. Results indicted an enrichment in δ~(13)C of8.44‰ from-26.56(at the contaminant source) to-18.12‰(300 m downfield of the source).These results confirm reductions in sulphanilamide concentrations(from 650 to 10 mg/L)across the contaminant plume to be attributable to biodegradation(56%) vs. other natural attenuation processes, such as dilution or dispersion(42%). To understand the controls on sulphanilamide degradation ex-situ microcosms assessed the influence of sulphanilamide concentration, redox conditions and an alternative carbon source. Results indicated, high levels of anaerobic capacity(~50% mineralisation) to degrade sulphanilamide under high(263 mg/L), moderate(10 mg/L) and low(0.02 mg/L) substrate concentrations. The addition of electron acceptors; nitrate and sulphate, did not significantly enhance the capacity of the groundwater to anaerobically biodegrade sulphanilamide. Interestingly, where alternative carbon sources were present, the addition of nitrate and sulphate inhibited sulphanilamide biodegradation. These results suggest, under in-situ conditions, when a preferential carbon source was available for biodegradation, sulphanilamide could be acting as a nitrogen and/or sulphur source. These findings are important as they highlight sulphanilamide being used as a carbon and a putative nitrogen and sulphur source, under prevailing iron reducing conditions.  相似文献   
16.
序言所有普通火成岩都含原生硫化物矿物。它们提供了有关岩浆溶解并搬运硫的明显的证据。在许多成矿过程中岩浆搬运硫的重要性早就被认识了。然而对于控制岩浆携带硫的容量(Sulfur-carrying capacity)的  相似文献   
17.
减少全球NOx排放:开发先进的能量和运输技术   总被引:1,自引:0,他引:1  
从全球范围来讲,未来能量需求将会持续增长.由于发展中国家要提高其生活水平,因此,在可预见的将来,全球NOx排放会呈现出不断增加的趋势.美国采取了一些改善措施来减少固定和流动污染源的NOx排放,以减少对臭氧层的损坏.同时需要采取进一步的改进措施以降低与NOx排放有关的对身体健康和生态系统的影响.由于对电力和运输需求的增长,在世界上其他地区(尤其是发展中国家)NOx排放一直在稳定增长.如果实施适当的政策措施,能源和运输技术的改善会有助于减少NOx排放.这篇论文评价了商用电力生产和运输技术,相对于传统技术而言,它们排放较少的NOx,同时还评价了近10年内商用方面的先进技术.文章还评估了可以在地区、国家和全球水平上实施的不同政策措施,以此来促进这些先进技术的开发并最终减少NOx排放.论文提出了技术飞跃的概念,很可能有助于发展中国家缩减那些导致NOx排放增大的项目.  相似文献   
18.
Vertical profiles of isoprene and monoterpenes were measured by a proton transfer reaction-time of flight-mass spectrometry (PTR-ToF-MS) at heights of 3, 15, 32, 64, and 102 m above the ground on the Institute of Atmospheric Physics (IAP) tower in central Beijing during the winter of 2016 and the summer of 2017. Isoprene mixing ratios were larger in summer due to much stronger local emissions whereas monoterpenes were lower in summer due largely to their consumption by much higher levels of ozone. Isoprene mixing ratios were the highest at the 32 m in summer (1.64 ± 0.66 ppbV) and at 15 m in winter (1.41 ± 0.64 ppbV) with decreasing concentrations to the ground and to the 102 m, indicating emission from the tree canopy of the surrounding parks. Monoterpene mixing ratios were the highest at the 3 m height in both the winter (0.71 ± 0.42 ppbV) and summer (0.16 ± 0.10 ppbV) with a gradual decreasing trend to 102 m, indicting an emission from near the ground level. The lowest isoprene and monoterpene mixing ratios all occurred at 102 m, which were 0.71 ± 0.42 ppbV (winter) and 1.35 ± 0.51 ppbV (summer) for isoprene, and 0.42 ± 0.22 ppbV (winter) and 0.07 ± 0.06 ppbV (summer) for monoterpenes. Isoprene in the summer and monoterpenes in the winter, as observed at the five heights, showed significant mutual correlations. In the winter monoterpenes were positively correlated with combustion tracers CO and acetonitrile at 3 m, suggesting possible anthropogenic sources.  相似文献   
19.
Fluorochemicals (FCs) are oxidatively recalcitrant, environmentally persistent, and resistant to most conventional treatment technologies. FCs have unique physiochemical properties derived from fluorine which is the most electronegative element. Perfluorooctanesulfonate (PFOS), and perfluorooctanoate (PFOA) have been detected globally in the hydrosphere, atmosphere and biosphere. Reducing treatment technologies such as reverses osmosis, nano-filtration and activated carbon can remove FCs from water. However, incineration of the concentrated waste is required for complete FC destruction. Recently, a number of alternative technologies for FC decomposition have been reported. The FC degradation technologies span a wide range of chemical processes including direct photolysis, photocatalytic oxidation, photochemical oxidation, photochemical reduction, thermally-induced reduction, and sonochemical pyrolysis. This paper reviews these FC degradation technologies in terms of kinetics, mechanism, energetic cost, and applicability. The optimal PFOS/PFOA treatment method is strongly dependent upon the FC concentration, background organic and metal concentration, and available degradation time.  相似文献   
20.
Development and demonstration of reliable measurement techniques that can detect and help quantify the nature and extent of elemental mercury (Hg(0)) in the subsurface are needed to reduce uncertainties in the decision-making process and increase the effectiveness of remedial actions. We conducted field tests at the Y-12 National Security Complex in Oak Ridge, Tennessee, USA, to determine if sampling and analysis of Hg(0) vapors in the shallow subsurface (<0.3 m depth) can be used to as an indicator of the location and extent of Hg(0) releases in the subsurface. We constructed a rigid polyvinyl chloride push probe assembly, which was driven into the ground. Soil gas samples were collected through a sealed inner tube of the assembly and were analyzed immediately in the field with a Lumex and/or Jerome Hg(0) analyzer. Time-series sampling showed that Hg vapor concentrations were fairly stable over time, suggesting that the vapor phase Hg(0) was not being depleted and that sampling results were not sensitive to the soil gas purge volume. Hg(0) vapor data collected at over 200 push probe locations at 3 different release sites correlated very well to areas of known Hg(0) contamination. Vertical profiling of Hg(0) vapor concentrations conducted at two locations provided information on the vertical distribution of Hg(0) contamination in the subsurface. We conclude from our studies that soil gas sampling and analysis can be conducted rapidly and inexpensively at large scales to help identify areas contaminated with Hg(0).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号