排序方式: 共有60条查询结果,搜索用时 0 毫秒
31.
32.
33.
34.
35.
36.
37.
38.
为高效回收抗生素菌渣中的蛋白质,采用不同沉淀法分离青霉素菌渣中的蛋白质。首先,考察不同沉淀法对蛋白质的沉淀效果,选出最优蛋白质沉淀方法;然后,开展单因素实验并基于响应曲面法选择分离青霉素菌渣中蛋白质的最优工艺参数;最后,利用最优工艺条件对青霉素菌渣进行蛋白质分离实验验证。结果表明,三氯乙酸(TCA)沉淀法沉淀效果最好,其分离青霉素菌渣中蛋白质的最优工艺条件为:TCA的质量分数为20%、水解液pH为3.0、沉淀时间为10 h和离心转速为10 000 r·min−1;此条件下的预测蛋白质沉淀率为89.5%,实际蛋白质沉淀率为89%。该研究结果可为菌渣蛋白质高效回收提供参考。 相似文献
39.
本文用模拟废水进行了磷酸铵镁(MAP)沉淀法脱氮试验,着重分析了pH值对沉淀种类及晶态的影响,试验结果表明MAP沉淀法废水脱氮的适宜pH值在9.0~10.5之间,在此范围内氨氮去除率和沉淀量随pH值升高而增加,生成MAP比较纯净。用污泥回流液进行验证试验,结果表明MAP沉淀法在处理实际废水时具有良好的效果。 相似文献
40.
抗生素菌渣的热解行为受其热解条件的影响,而明确热解条件对抗生素菌渣热解特性的影响是其热解资源化和无害化的前提。通过在固定床反应器中热解抗生素菌渣(以土霉素菌渣为例),采用热重分析法研究升温速率、菌渣粒径、添加剂(CaO、CeO_2、Na_2CO_3)等热解条件对抗生素菌渣热解特性的影响,并利用傅里叶红外光谱仪(FTIR)分析了其热解过程中SO_2、HCN、NH_3、NO等气态污染物的排放规律。结果表明:抗生素菌渣的热解主要分为两个阶段,即在200~600℃温度区间,抗生素菌渣内有机质充分热解,挥发分大量析出,抗生素菌渣的质量损失从95%降低至40%左右,且在370℃达到最大失重速率9%/min,而在600~900℃温度区间,热解焦继续热解,抗生素菌渣的质量损失从40%降低至30%左右,直至稳定;升温速率的改变对热解焦剩余量的影响较小,但随着升温速率的提高,其热解速率加快;菌渣粒径越小,其热解速率越快,分解越彻底,热解焦的剩余量越少;添加剂能够改善抗生素菌渣的热解活性,降低热解反应的活化能,并可以促进氮、硫元素的转化,使热解气体中HCN、NH_3、NO、SO_2的排放浓度降低。 相似文献