首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   3篇
  国内免费   10篇
环保管理   2篇
综合类   25篇
基础理论   1篇
污染及防治   2篇
社会与环境   1篇
  2024年   1篇
  2023年   1篇
  2021年   4篇
  2020年   3篇
  2019年   5篇
  2018年   2篇
  2016年   1篇
  2015年   1篇
  2014年   4篇
  2013年   3篇
  2011年   1篇
  2010年   2篇
  2008年   3篇
排序方式: 共有31条查询结果,搜索用时 31 毫秒
11.
我国钢铁工业一次颗粒物排放量估算   总被引:2,自引:0,他引:2  
针对我国钢铁工业生产工艺以及颗粒物控制技术的分类,建立了一个细化到排放节点的自下而上的颗粒物排放模型.结合我国钢铁工业各地区活动水平以及颗粒物控制技术分布的历史变化趋势分析,利用此模型计算了2006—2012年我国钢铁工业一次颗粒物的排放系数和排放量.模型计算结果显示,2006年以来,我国钢铁工业颗粒物控制水平不断提高,PM_(2.5)、PM_(2.5)~10和PM10的排放系数分别降低了21.2%、19.3%和19.0%.钢铁工业一次颗粒物排放量在2006—2011年间持续增长,2011年TSP排放量为602×104t,PM10排放量为200×104t,PM_(2.5)排放量为124×104t;2012年排放量出现下降,TSP排放量为561×104t,PM10排放量为187×104t,PM_(2.5)排放量为116×104t.2012年我国钢铁工业一次PM_(2.5)排放量中的有组织排放占39.5%,无组织排放占60.5%;除加严有组织源管控之外,减少颗粒物无组织排放,对于钢铁工业颗粒物排放控制也非常重要.我国钢铁工业颗粒物排放量分布不均衡,河北、山东、江苏、辽宁、山西5个省的排放超过全国总排放的50%.  相似文献   
12.
淄博市大气污染特征模型模拟及环境容量估算   总被引:3,自引:2,他引:1  
为在我国构建基于"浓度控制、总量控制、质量控制"相结合的大气污染防治新模式,结合国家《重点区域大气污染防治规划(2011-2015年)》及《淄博市环境保护"十二五"规划》的编制工作,利用CALPUFF空气质量模型模拟了淄博市及其周边地区大气污染特征,并基于模型模拟结果采用多目标线性优化方法估算了淄博市SO2、NOx、PM10这3项污染物的环境容量.研究表明,淄博市大气污染受外来污染源影响大,外来污染源对淄博全市SO2、NO2、PM10年均浓度贡献率分别达26.34%、21.23%、14.58%.淄博市各区县之间存在显著的相互影响关系,其中周边区县对张店中心城区的SO2、NO2、PM10年均浓度贡献率分别为35.96%、43.17%、17.69%.淄博市不同区县的空间敏感性差异较大,其中周村区、桓台县、张店区、淄川区单位污染物排放量对城市空气质量的综合影响明显大于其它区县.淄博市要达到《环境空气质量标准》(GB 3095-2012)的要求,SO2、NOx、PM10的环境容量分别仅为8.03×104、19.16×104、3.21×104t.因此,在山东半岛实施区域大气污染联防联控是确保淄博市空气质量达标的必要途径.  相似文献   
13.
为探究聊城市冬季PM_(2.5)中水溶性物质的昼夜变化特征及其来源,于2017年1~2月进行PM_(2.5)样品采集,对其水溶性无机离子、乙二酸和左旋葡聚糖等水溶性化合物进行分析,并采用主成分分析-多元线性回归模型(PCA-MLR)对其来源进行解析.结果表明,采样期间聊城市PM_(2.5)平均质量浓度为(132. 6±65. 4)μg·m-3,是国家二级标准的1. 8倍,且夜晚PM_(2.5)的污染程度略高于白天. SNA(SO24-、NO3-和NH4+)是聊城市PM_(2.5)中最主要的水溶性离子,在白天与夜晚占总离子的质量分数为73. 4%和77. 1%,说明聊城市冬季二次污染较严重.白天与夜晚阴阳离子平衡当量比值(AE/CE)都小于1,说明PM_(2.5)呈碱性,且夜晚PM_(2.5)的酸性比白天强.无论在白天还是晚上,NH4+的主要存在形态均为NH4HSO4和NH4NO3.通过相关性分析,证实了乙二酸是在液相中经酸催化的二次氧化反应形成的,且受生物质燃烧的影响很强.通过PCA-MLR模型分析可知,聊城市冬季PM_(2.5)中的水溶性化合物主要来自机动车尾气及其二次氧化、生物质燃烧,而受矿物粉尘与煤炭燃烧的影响较小.  相似文献   
14.
安阳市典型工业源PM2.5排放特征及减排潜力估算   总被引:1,自引:0,他引:1  
为探究安阳市PM_(2. 5)排放特征,通过现场调查对安阳市工业源活动水平和控制技术信息进行收集,采用合理的估算方法、排放因子,建立了安阳市2016年工业源PM_(2. 5)排放清单,并利用地理信息系统(GIS)技术进行空间分配.基于典型行业超低排放改造和煤炭压减要求设置3种情景,估算了2020年安阳市工业源PM_(2. 5)减排潜力.结果表明,安阳市2016年工业源PM_(2. 5)排放总量为81 071. 13 t;有色冶金、钢铁和建材行业是安阳市PM_(2. 5)主要贡献源,分别占总排放量的45. 43%、25. 74%和18. 00%;安阳市各乡镇排放差异突出,PM_(2. 5)排放主要集中在市区及林州市和安阳县,且以安阳市区排放量最为突出,而安阳市区的4个辖区的排放强度差异更为巨大;通过设定不同控制情景,估算2020年安阳市PM_(2. 5)减排潜力分别为398. 72、11 623. 87和14 072. 27 t,分别占2016年工业源排放总量的0. 49%、14. 34%和17. 22%.可见,安阳市PM_(2. 5)具有较大减排潜力,超低排放改造和煤炭压减对安阳市PM_(2. 5)减排具有重要意义.  相似文献   
15.
为研究聊城市冬季PM_(2. 5)中多环芳烃(PAHs)的浓度水平、来源及健康效应,于2017年1~2月对聊城市PM_(2. 5)中的14种PAHs进行分析,利用特征比值法和PCA-MLR模型对其来源及贡献率进行解析,并利用Ba P当量浓度(Ba Peq)和呼吸途径暴露PAHs引发癌症的风险(ILCR)模型进行健康风险评估.结果表明,聊城市冬季PM_(2. 5)中PAHs的平均质量浓度为(64. 89±48. 23) ng·m~(-3),其中Fla、Pyr和Chry的浓度最高,占比分别为15. 5%、12. 8%和12. 7%,且4环PAHs总质量浓度占比最高,春节前与烟火Ⅱ期比其他时期污染较重. PCA-MLR模型分析结果表明,聊城市冬季PM_(2. 5)中PAHs来源主要包括煤炭燃烧、生物质燃烧和机动车尾气.聊城市冬季TEQ平均值为(6. 37±4. 92) ng·m~(-3),ILCR模型评估结果表明,成人的ILCR值高于儿童,二者的ILCR值均处于风险阈值内(10-6~10-4),表明聊城市冬季PM_(2. 5)具有潜在致癌风险.  相似文献   
16.
火力发电行业温室气体排放因子测算   总被引:9,自引:4,他引:5  
为了解我国火力发电行业温室气体排放状况及排放因子,利用U23多组分红外气体分析仪及TH880F烟尘分析仪对全国30台具有代表性的火力发电机组排放的CO2和N2O进行了在线监测;监测及后续的数据处理阶段均遵循了联合国政府间气候变化专门委员会(IPCC)关于温室气体排放计算的质量保证和质量控制原则.利用统计学方法对数据进行处理,给出了CO2和N2O 3种表达方式的排放因子. 结果表明:CO2排放因子主要受装机容量、燃料及机组使用年限与维护质量的影响;常规煤粉机组的N2O排放因子随装机容量的增加逐渐变小,循环流化床机组N2O排放因子最大;与IPCC缺省排放因子的比较表明,烟煤、褐煤的CO2和N2O排放因子均在IPCC缺省因子95%置信区间内,贫煤CO2和N2O的排放因子均大于IPCC缺省因子;天然气CO2和N2O排放因子与IPCC缺省因子相差不大.   相似文献   
17.
典型城市空气污染特征对比分析   总被引:1,自引:2,他引:1       下载免费PDF全文
本文以聊城和宁波为典型城市案例,利用两市国家环境空气质量自动监测站监测数据以及环境质量公告数据,分析南北城市大气污染特征与影响因素差异,在此基础上,提出我国南北城市大气污染防治策略。结果表明:(1) 2016年宁波市仅ρ(PM_(2.5))超出二级标准11%,ρ(SO_2)和ρ(NO_2)均已达标;2016年聊城市ρ(SO_2)低于二级标准,ρ(NO_2)仍超出二级标准2.5%,ρ(PM_(2.5))超出二级标准限值1.46倍。(2)聊城市空气污染呈现出煤烟型污染与机动车尾气污染共存的复合型大气污染特征,而宁波市空气质量呈现出明显的二次污染特征。(3)较低的经济发展水平是造成聊城市较高的污染物浓度以及较多的重污染天数的主观原因;而产业结构的差异是两市首要污染物不同的主观原因,地理位置与扩散条件差异是两市空气质量差异的客观原因。(4)建议今后在城市空气质量防治过程中,构建有针对性的城市大气污染防治策略,形成精细化管理的理念,积极开展"一市一策"研究。  相似文献   
18.
张敬巧  朱瑶  曹婷  燕丽  王淑兰  刘铮 《环境科学》2024,45(4):2003-2010
为研究聊城市冬季环境空气中PM2.5载带金属元素的污染特征、风险评价及来源,分别于2018年和2019年的1月采集了环境空气PM2.5样品并分析了其中19种金属元素的浓度.结果表明,采样期间聊城市冬季ρ(PM2.5)和金属元素浓度平均值分别为(87.7±39.9)μg·m-3和(6.92±2.91)μg·m-3,金属元素中ρ(Ca)和ρ(Al)最高,分别为1.97μg·m-3和1.35μg·m-3,其他元素浓度相对偏低,相较于清洁天,污染天时ρ(Ca)、ρ(Al)、ρ(Fe)及ρ(Ti)有所降低,而其他元素浓度均有所升高.地累积指数(Igeo)结果表明,聊城市冬季Cd、Zn、Pb、Sn和Cu的Igeo均高于2.5,受污染程度均在重度污染以上,其他元素Igeo均小于1,属于轻度污染或无污染程度.潜在生态风险评价结果显示金属元素的RI指数高达10 114.2,潜在危害较强,其中Cd的Er最高为9 802.2,其次为Pb、As和Cu,Cd贡...  相似文献   
19.
细颗粒物已经成为影响城市和区域空气质量的首要污染物。根据我国74个重点城市PM2.5年均浓度监测数据,分析了我国大气细颗粒物污染状况和区域分布特征。结合环境空气质量标准和"国十条"的要求,综合考虑不同区域空气污染特征、经济发展水平和环境管理需求的差异,提出了不同区域城市PM2.5年均浓度达标年限,并从管理机制、管理手段、达标途径等方面提出了我国城市PM2.5年均浓度达标策略。  相似文献   
20.
为探讨泰安市夏季PM2.5中正构烷烃和糖类的化学组成及其来源,于2016年7~8月进行PM2.5样品采集,对泰安市正构烷烃及糖类进行分析,并利用主成分分析-多元线性回归模型(PCA-MLR)和后向轨迹模型对污染物进行来源解析.结果表明,2016年泰安市夏季PM2.5质量浓度为(37.2±11.5)μg·m-3,是我国环境空气质量一级标准(GB 3095-2012,35μg·m-3)的1.1倍.其中,正构烷烃质量浓度为(83.3±34.7)ng·m-3,碳优势指数(CPI)为1.83,植物蜡烷烃贡献率(% WaxCn)为34.7%~69.4%,表明植物蜡是泰安市夏季正构烷烃的主要来源.糖类化合物的质量浓度为(73.4±46.6)ng·m-3,其中左旋葡聚糖、半乳聚糖和甘露聚糖是主要的糖类组分,分别占糖类化合物总浓度的64.0%、7.1%和6.3%,表征生物质燃烧对泰安市糖类具有重要贡献.由PCA-MLR模型结果表明,泰安市夏季PM2.5中正构烷烃和糖类化合物主要来自植物蜡、化石燃料燃烧和生物质燃烧.后向轨迹分析表明,泰安市夏季正构烷烃和糖类污染物主要来自山东本地源和南方内陆地区.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号