首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   20篇
  国内免费   129篇
综合类   164篇
基础理论   27篇
污染及防治   13篇
评价与监测   2篇
  2023年   2篇
  2022年   2篇
  2021年   3篇
  2020年   3篇
  2019年   7篇
  2018年   6篇
  2017年   6篇
  2016年   7篇
  2015年   4篇
  2014年   10篇
  2013年   17篇
  2012年   11篇
  2011年   12篇
  2010年   18篇
  2009年   15篇
  2008年   17篇
  2007年   10篇
  2006年   15篇
  2005年   8篇
  2004年   6篇
  2003年   14篇
  2002年   4篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1994年   1篇
  1993年   1篇
排序方式: 共有206条查询结果,搜索用时 0 毫秒
61.
一台气相色谱仪同时测定陆地生态系统CO2、CH4和N2O排放   总被引:3,自引:0,他引:3  
通过对气相色谱仪进样、分析气路和阀驱动系统的改造 ,同一台色谱仪可以同时检测空气样品中的CO2 、CH4和N2 O。测试结果表明 ,仪器的灵敏度、分辨率和精密度均很高 ,线性范围符合要求 ;仪器系统能够在野外实验室长期稳定运转 ,可方便用于测定陆地生态系统CO2 、CH4和N2 O排放 ,能快速、准确、可靠地获取观测数据。  相似文献   
62.
不同原理分析仪观测大气中氮氧化物对比研究   总被引:4,自引:0,他引:4  
氮氧化物(NOx)是大气二次光化学污染臭氧的重要前体物,但目前对其总量和分量的测量仍存在着一些难以解决的问题。选择3种不同原理的市售氮氧化物分析仪在广东和北京进行比对观测实验,从而比较其各自的优缺点及适用性。结果表明,钼转化法(MC)测得的NOx比光转化法(LC)及液相化学发光法(LPC)所测得的值都明显偏高,可近似认为是NOy。LPC检测NO2时受到PAN等含有—NO2生色基团的干扰,结果比LC略高。LC测得的NOx值与实际大气最为接近。MC测定的NOx比实际值高,但能满足空气质量指标监测的需求;LC能够准确测定大气中的NOx,但造价太高,仅适用于大气化学机理研究;而LPC原理的仪器适合于短时间的航测、高塔和系留艇进行垂直梯度观测。  相似文献   
63.
北京大气中NO、NO2和O3浓度变化的相关性分析   总被引:18,自引:8,他引:18  
臭氧(O3)是城市污染大气中的首要光化学污染物,其变化规律与氮氧化物(NOx=NO+NO2)关系密切.采用49C臭氧分析仪和42CTL氮氧化物分析仪对北京城区O3和NOx浓度进行了连续观测,时间为2004-08~2005-07.结果显示,O3和OX(O3+NO2)浓度在午后15:00左右出现峰值,NOx呈双峰态日变化,在07:00和23:00左右出现峰值.不同季节污染物的浓度变化存在差异,O3和NOx浓度分别在夏季和冬季达到最大.NOx浓度存在100×10-9(体积分数)的“分界点”,NOx低浓度时以NO2为主,NOx高浓度时NO占大部分.OX区域贡献和局地贡献存在明显的季节变化,前者主要受区域背景O3的影响,在春季最大,后者主要受局地NOx光化学反应的制约,在夏季最强,同时OX组分呈现显著的昼夜差异.  相似文献   
64.
为了研究重庆市北碚区城区气溶胶中水溶性无机离子的浓度和分布特征,于2014年3月~2015年2月利用安德森采样器连续采集大气气溶胶分级样品,并用离子色谱法分析了不同粒径(9.00、5.80、4.70、3.30、2.10、1.10、0.65和0.43μm)中Na~+、NH~_4~+、K~+、Mg~(2+)、Ca~(2+)、F-、Cl-、NO_3~-、SO_4~(2-)这9种水溶性无机离子.结果表明,SO_4~(2-)、NH~_4~+、NO_3~-、Cl-、Na~+、K~+主要分布在细粒子中,Mg~(2+)、Ca~(2+)、F-主要分布在粗粒子中.SNA(SO_4~(2-)、NH~_4~+和NO_3~-三者的简称)呈明显单峰型分布,其峰值均出现在0.65~1.10μm的液滴模态,且在细粒子中主要以(NH4)2SO4和NH4NO3形式存在.SO_4~(2-)的形成主要来自云内过程,部分来自SO_2的氧化.Na~+、Cl-、Mg~(2+)在粗、细粒子中呈双峰型分布;K~+在0.43~1.10μm呈单峰型分布;F-、Ca~(2+)在粗粒子中出现峰值.观测期间,PM2.1和PM9.0中总水溶性离子的年均质量浓度分别为(32.68±15.28)μg·m~(-3)和(48.01±19.66)μg·m~(-3),且浓度具有相似季节变化特征,均表现为冬季春季夏季秋季.大部分离子(Na~+、NH~_4~+、K~+、Cl-、NO_3~-、SO_4~(2-))浓度表现为冬春季偏高,夏秋季偏低;而少数离子(F-、Mg~(2+)、Ca~(2+))浓度在秋季最低,其他季节浓度变化稍有不同.SNA是PM2.1中最主要的水溶性离子;而PM9.0中水溶性离子的主要成分除了SNA外,还包括Ca~(2+).PM2.1和PM9.0中阳离子总浓度明显高于阴离子,且不同离子间均具有一定的相关性.主成分分析结果表明,该地区水溶性离子的主要来源包括机动车尾气的排放源、燃烧源、土壤源和建筑道路扬尘.分析气象因素的影响,发现气温对二次离子的生成有明显关系(P0.05),而相对湿度、风速的影响则不显著(P0.05).  相似文献   
65.
鼎湖山PM_(2.5)中化学元素的组成及浓度特征和来源   总被引:2,自引:0,他引:2  
为研究珠江三角洲大气颗粒物的污染特征及其来源,于2006年6~12月,在鼎湖山利用大流量颗粒物采样仪进行PM2.5样品的采集,并利用ICP-MS分析其中的元素浓度.结果表明,Pb、V、Cu、As、Zn、Se元素平均浓度为216.24、15.40、60.56、31.81、432.06和8.12 ng·m-3,处于高污染浓度水平.因子分析表明,化石燃料的燃烧、金属冶炼工业、扬尘和海盐是该地区PM2.5的主要来源.  相似文献   
66.
刘静达  何超  赵舒曼  朱俊  汪巍  王莉莉  王跃思 《环境科学》2023,44(10):5392-5399
近年来,我国臭氧(O3)污染形势日趋严峻,在多地已超越PM2.5成为大气环境的首要污染物.气象条件,尤其是温度和湿度对O3生成的影响极大.因此,厘清并量化不同区域温度和湿度变化对O3浓度的影响可为政府防治臭氧污染提供理论依据.通过分析2015年1月1日至2022年7月31日实测日最大温度(Tmax)和相对湿度(RH)与臭氧日最大8 h滑动平均值(O3-8h)的关系,发现臭氧污染严重的七大区域的O3-8h与Tmax呈线性正相关关系,温度惩罚因子范围为2.1~6.0 μg ·(m3 ·℃)-1;O3-8h与RH呈非线性关系,RH为55%时O3-8h最高;不同区域对Tmax和RH的敏感度稍有不同,总体上最适合O3生成的气象条件为29℃≤Tmax<38℃且40%≤RH<70%.长三角、苏皖鲁豫和长江中游地区在Tmax≥35℃的极端高温条件下,O3-8h停止随温度的上升而增长,反而出现下降现象,且往往伴随颗粒物浓度的小幅上升.这可能与部分前体物在水汽含量变高的情况下发生非均相反应及臭氧的非均相汇增加有关.  相似文献   
67.
利用京津冀及周边地区大气污染综合立体监测网,在京津冀大气污染传输通道城市(“2+26”城市)开展了PM2.5及其化学组分长期连续观测,并对数据进行深入分析.结果表明:①2017年、2018年和2019年采暖季“2+26”城市PM2.5浓度平均值分别为(84±62)(95±63)和(80±61)μg/m3,达到了京津冀及周边地区2019—2020年秋冬季PM2.5平均浓度同比下降4%的目标;与PM2.5浓度变化相似,其主要化学组分——有机物(OM)浓度最大值出现在2018年采暖季,但二次无机盐(硝酸盐、硫酸盐和铵盐)浓度呈逐年上升趋势,而元素碳、氯盐、地壳物质和微量元素浓度均呈逐年下降趋势.②OM、硝酸盐、硫酸盐、铵盐、地壳物质、元素碳、氯盐和微量元素浓度空间分布存在明显差异.受污染物排放、气象条件以及地形因素的共同影响,PM2.5及其化学组分浓度高值区主要出现在太行山传输通道城市(保定市、石家庄市、邢台市、邯郸市、安阳市和新乡市).③不同空气质量状况下,“2+26”城市PM2.5化学组分浓度年际变化相似,即随空气污染的加重,硝酸盐、硫酸盐和铵盐占PM2.5的比例均上升,而OM占比下降.研究显示,采暖季“2+26”城市空气质量总体得到改善,但需进一步加强对PM2.5中二次组分的科学管控.   相似文献   
68.
利用2009年北京市大气颗粒物质量浓度和气溶胶光学特性的同步观测研究发现,北京市城区颗粒物污染严重.PM2.5、PM10年平均浓度分别为(65±14)、(117±31)μg·m-3,均超出国家2016年拟执行环境空气质量二级标准,PM2.5、PM10日均值超标率分别为35%、26%.细粒子PM2.5污染与可吸入颗粒物PM10污染呈显著性相关,相关系数R约为0.90(P<0.001),二者相关性伴随PM2.5在PM10中所占比重自春季到冬季逐渐增大而增强,年均PM2.5占PM10比重为61%.气溶胶光学厚度AOD(500 nm)与气溶胶波长指数(α)年均值分别为(0.55±0.10)、(1.12±0.08).PM2.5、PM10与AOD间全年及各季节均呈显著线性相关,相关系数R≥0.50;但其相关系数与相关函数存在着显著的季节差异,夏秋季节相关性显著高于春冬季节,且全年相关会掩盖较大的季节性系统差异.对PM2.5、PM10数据进行湿度订正,对AOD进行混合层高度订正,PM2.5、PM10与AOD之间的相关性得到一定提升,且更适合指数相关.  相似文献   
69.
北京夏冬季霾天气下气溶胶水溶性离子粒径分布特征   总被引:4,自引:11,他引:4  
黄怡民  刘子锐  陈宏  王跃思 《环境科学》2013,34(4):1236-1244
为研究北京夏、冬季霾粒子中水溶性离子的粒径谱分布,并进一步分析其来源及形成机制,于2009年夏季和冬季利用惯性撞击式8级采样器(Andersen)和石英微量振荡天平(TEOM)对北京城区大气气溶胶分别进行了为期2周的连续采样和监测,并用离子色谱(IC)对气溶胶中的水溶性离子进行了分析.结果表明,夏季霾天PM10和PM2.5的质量浓度分别为(245.5±8.4)μg.m-3和(120.2±2.0)μg.m-3,冬季霾天对应的数值分别为(384.2±30.2)μg.m-3和(252.7±47.1)μg.m-3,无论夏季还是冬季,霾天大气细粒子污染均十分严重.细粒子中总水溶性离子(TWSS)的浓度霾天远高于对照天,其中霾天浓度上升较快的是SO24-、NO3-和NH4+,二次无机离子对霾天气的形成过程扮演重要作用.除NO3-外,其余7种水溶性离子夏、冬季霾天粒径谱分布一致,即,SO24-、NH4+主要分布于PM1.0以下的细粒子模态,Mg2+、Ca2+主要分布于PM2.5以上的粗粒子模态,Na+、Cl-和K+呈双模态分布;夏季霾天NO3-呈双模态分布,而冬季则主要分布于细粒子中.夏季霾天SO24-的平均质量中值粒径(MMAD)为0.64μm,SO24-主要来自远程SO2的云内反应,并且SO2表观转化率(SOR)高于对照天,使得霾天光化学反应生成的细粒子远远高于对照天气过程;冬季霾天SO24-的MMAD增至0.89μm,冬季因局地SO2排放并被非均相化学反应过程氧化为SO24-亦为北京大气细粒子的重要来源.夏、冬季霾天NO3-的MMAD分别为2.85μm和0.80μm,受到温度的影响,NO3-夏、冬季节分别以硝酸钙和硝酸铵的形式存在于粗、细粒子中.  相似文献   
70.
2011~2012年冬春期间(11月到翌年4月),通过设置在海伦农田生态系统国家野外科学观测研究站内的在线监测仪器获取了PM2.5和气态污染物(NOx、O3和SO2)质量浓度的时间变化,同时结合地面气象资料和HYSPLIT后向气团轨迹模型分析了该地大气污染物的污染水平、可能来源及传输过程.结果表明:观测期间PM2.5、NOx和SO2的24h均值(范围)分别为(54.7±45.7)(8.0~217.8),(23.0±11.5)(4.5~59.6), (10.0±10.3)(0.3~56.0)μg/m3, O3的日最大8h平均值(范围)为(62.4±18.7)(24.1~173.5)μg/m3,其中除O3在4月份超过国家一级标准8d外,其它气态污染物均未超过国家一级标准;PM2.5超过国家二级标准的天数为40d,占整个观测期间的22.5%.PM2.5和SO2各月质量浓度变化较大,最高值出现在12月份,是冬季采暖的高峰期.NOx、PM2.5和SO2日变化呈双峰型,峰值出现在07:00和17:00左右;O3为单峰型,峰值出现13:00~15:00.通过对海伦地区72h内HYSPLIT后向气团轨迹模拟结果和该站点的气象数据进行分析,表明该农业区大气污染受本地源和区域输送共同影响,偏南气流易造成污染物积累,而偏北气流有利于污染物扩散.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号