首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   4篇
  国内免费   24篇
综合类   34篇
基础理论   1篇
污染及防治   1篇
评价与监测   2篇
  2024年   1篇
  2023年   6篇
  2022年   4篇
  2021年   4篇
  2020年   5篇
  2019年   3篇
  2018年   4篇
  2017年   2篇
  2016年   1篇
  2015年   5篇
  2014年   1篇
  2012年   1篇
  2009年   1篇
排序方式: 共有38条查询结果,搜索用时 15 毫秒
21.
宁波市环境空气中PM10和PM2.5来源解析   总被引:21,自引:4,他引:17  
2010年在宁波3个环境受体点采集不同季节的PM10和PM2.5样品,同时采集颗粒物源类样品,分析它们的质量浓度及多种无机元素、水溶性离子和碳等组分的含量.采用OC/EC最小比值法确定了SOC(二次有机碳)对PM10和PM2.5的贡献,据此重新构建了受体化学成分谱.使用化学质量平衡模型对宁波市区的PM10和PM2.5来源进行了解析.结果表明:城市扬尘、煤烟尘、二次硫酸盐和机动车尾气尘是环境空气中PM10的主要来源,其分担率分别为23.0%、15.9%、13.3%和12.3%;对PM2.5有重要贡献的源类是城市扬尘、煤烟尘、二次硫酸盐、机动车尾气尘、二次硝酸盐和SOC,其分担率分别为19.9%、14.4%、16.9%、15.2%、9.78%和8.85%.   相似文献   
22.
为研究在常规处理单元中实现浊度和重金属污染物同时达标的可能性,基于表面络合(吸附)理论及物料衡算原理建立了重金属污染物在常规净水工艺单元的去除模型,分析了工艺参数与重金属污染物出水浓度及其健康风险的关系,提出了减少健康风险的工艺调控方法及基于健康风险的净水工艺选择原则。结果表明,当原水重金属超标时,应优先选择通过合理调整常规净水工艺的投药量、改变药剂种类和配比、调整滤池滤速等工艺参数使浊度与重金属污染物同时达标的方案,若调控工艺参数不能消除出水重金属的健康风险时,要考虑设置后序深度处理单元。  相似文献   
23.
2014年11月6—11日,亚太经济合作组织(APEC)会议在北京市召开,京津冀区域采取了最高级别的空气质量保障措施。于2014年11月3—20日同步手动采集天津市PM2.5样品,对APEC会议期间(2014年11月3—11日,在此期间实施了空气质量保障措施)及会议后(2014年11月12—20日)天津市PM2.5中水溶性无机离子组分浓度、二次转化特征等进行了分析。结果表明,APEC会议期间,天津市PM2.5平均质量浓度为78μg/m3,而会议后达到87μg/m3;会议期间PM2.5中水溶性无机离子的浓度为NO-3SO2-4NH+4Cl-K+Na+Ca2+Mg2+,会议后,除Mg2+外,各项离子浓度均有不同程度的上升;会议期间,PM2.5中NO-3浓度最高,在水溶性无机离子中所占比例为38.9%,其次为SO2-4(为22.0%)、NH+4(为20.8%),3者所占比例合计为81.7%,会议后3者所占比例降至75.0%;会议期间的大气污染以流动源为主;会议后,硫氧化率和氮氧化率均不同程度减弱,说明会议期间的二次离子转化更为明显;会议期间的停工停产措施对PM2.5中一次离子来源有明显改变,城市扬尘得到明显抑制。  相似文献   
24.
2019年天津市挥发性有机物污染特征及来源   总被引:13,自引:13,他引:0  
为了解天津市环境空气挥发性有机物(VOCs)污染特征及来源,基于2019年城区点位高时间分辨率在线监测数据,对天津市VOCs浓度水平、化学组成及来源进行分析.结果表明,2019年天津市VOCs年均浓度为48.9 μg·m-3,不同季节浓度水平依次为:冬季(66.9 μg·m-3)>秋季(47.9 μg·m-3)>夏季(...  相似文献   
25.
基于2013~2020年高时空分辨率的PM2.5和O3在线监测数据以及气象观测数据,利用KZ(Kolmogorov-Zurbenko)滤波耦合逐步回归等技术,对天津市PM2.5和O3浓度变化趋势、相互关系和影响因素进行了分析.结果表明,与2013年相比,2020年天津市PM2.5浓度下降50.0%,O3浓度上升25.8%.从月际变化来看,与2013~2017年相比,2018~2020年天津市PM2.5浓度月际间差异逐渐缩小,O3浓度从4月开始出现明显上升,污染发生时间节点提前.O3与PM2.5的相关性呈现明显的季节性分布特征,冬季整体呈负相关,夏季正相关且相关性比其他季节高.不同季节O3与PM2.5之间的拟合斜率与相关性系数整体呈正比例关系,拟合斜率与相关性系数的比值逐年升高说明PM2.5对O3...  相似文献   
26.
为了解天津市PM2.5-O3复合污染特征及气象成因,基于2013~2019年高时间分辨率的PM2.5、 O3和气象观测数据,对天津市PM2.5-O3复合污染特征、污染物浓度分布以及关键气象因子进行分析.结果表明,2013~2019年,天津市复合污染日94 d,总体呈现下降趋势,前期(2013~2015年)下降明显,由2013年的23 d降至2015年的11 d,下降52.2%;后期(2016~2019年)波动式上升,由2016年的12 d升至2019年的14 d,上升16.7%.复合污染日主要出现在每年的3~9月,年际变化较大,2013~2016年在6~8月出现较多,2017~2019年在4月和9月出现较多.小时ρ(PM2.5)在75~85μg·m-3时,小时ρ(O3)存在峰值区(301~326μg·m-3).在所有O3污染中,PM2.5...  相似文献   
27.
天津市环境空气质量现状特征分析研究   总被引:2,自引:0,他引:2  
利用天津市环境空气监测数据及相关资料,统计分析其环境空气质量状况.结果表明,2013年天津市环境空气质量达标率为40%,重度及以上污染日有49天,主要发生在冬季,超标日的首要污染物以细颗粒物、可吸入颗粒物和臭氧为主.在空气质量污染物构成中,细颗粒物占比为29.43%,其次为可吸入颗粒物占比22.18%,表明天津市大气污染以颗粒物为主.细颗粒物与可吸入颗粒物的月均浓度线性相关系数为0.918 4,占比为64%.除臭氧以外的五项主要污染物在冬季污染最重,夏季污染较轻,臭氧浓度变化与气温变化保持一致,夏季最高,冬季最低.在市域内,滨海新区、蓟县和西青空气质量较好,红桥、宁河和北辰空气质量较差;气态污染物比颗粒物的空间分布更受局地排放的影响,而颗粒物污染分布具有区域性趋势.  相似文献   
28.
为了解“十三五”期间天津市O3污染特征和驱动因素,基于2016~2020年高时空分辨率的在线监测数据,利用空间自相关、空间热点分析和STIRPAT模型分析了O3污染空间分布、聚集特征和驱动因子.结果表明,2016~2020年天津市O3浓度变化特征呈现污染发生时间点提前和污染范围扩大的趋势.6~10月O3污染分布具有显著聚集性,高值-高值聚集区主要为市内六区、北辰区、津南区和静海区,O3浓度在西南部地区形成高值热点聚集区,在东北部地区形成低值冷点聚集区.气温、小风百分率和日照时数等气象因子与NOx排放量、 VOCs排放量和机动车保有量等社会因子对O3浓度有显著性影响,综合驱动STIRPAT模型的回归拟合效果比单一气象因子或社会因子模型更好.为科学高效地开展“十四五”期间O3污染的防治,在关注气象条件基础上,在“双碳”目标的约束下,天津市应进一步提升钢铁、石化、火电和建材等行业全过程排放的绩效水平,引导企业清洁化提升...  相似文献   
29.
基于天津市2019年1~3月超级观测站数据,研究重污染期间二次有机化学污染特征.重污染过程期间SOC约占PM_(2.5)质量的3.1%~3.8%,增长幅度显著高于PM_(2.5),二次有机化学反应对重污染PM_(2.5)有较大影响.VOCs增长幅度较PM_(2.5)低,可能与VOCs作为前体物生成二次颗粒物而有所消耗有关.乙烷/乙炔比值在2.0以上,但较污染前下降,说明尽管重污染期间气团老化,但活性有所提升.重污染期间VOCs对SOA的生成潜势为0.49~1.21μg·m~(-3),芳香烃对SOA生产贡献最大,贡献率大于90%,较污染前芳香烃类SOA生成潜势贡献升幅最大,说明芳香烃类是对SOA形成影响最大的物种.  相似文献   
30.
为了快速分析天津市区冬季以及重污染过程中PM2.5的化学组成特征及来源,本研究于2017年1月利用在线监测仪器快速采集了天津市区环境受体中PM2.5及其化学组分的小时数据,并通过PMF(positive matrix factorization,正定矩阵因子分解法)模型解析了天津市区2017年1月及重污染过程中PM2.5的主要贡献源类,分析了重污染过程中排放源的变化趋势.结果表明:2017年1月天津市区PM2.5浓度为6.0~449.0 μg·m-3,平均值为153.3 μg·m-3.NO3-、SO42-、NH4+是PM2.5中水溶性离子的主要组分,三者之和占水溶性离子总量的88.3%.NH4+与Cl-、NO3-、SO42-均表现出显著的正相关性(r=0.82,0.95,0.97;p<0.01).NO3-和SO42-r=0.90;p<0.01),Ca2+与Mg2+r=0.65;p<0.01)均表现出显著的相关性,说明它们分别具有较高的同源性.OC和EC也是PM2.5的重要组成部分,两者之和占PM2.5质量浓度的20.4%.重污染过程中,PM2.5及其主要离子的浓度显著的增加(p<0.01),并存在较高的二次离子生成.PMF解析结果表明,二次源类是天津市区2017年1月PM2.5的首要源类,分担率为38.1%,其次为机动车源(分担率为25.6%)、燃煤源(分担率17.1%)、扬尘(分担率10.1%)和生物质燃烧(分担率9.1%).重污染过程中,二次源是PM2.5的主要贡献源类,分担率达到39.3%;说明重污染期间存在显著的二次转化及二次粒子的积累过程.重污染发生演变过程中,二次源、机动车源和燃煤源对PM2.5贡献表现出显著增加的趋势,而扬尘和生物质燃烧的贡献则没有显著增加.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号