首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   3篇
  国内免费   7篇
综合类   10篇
污染及防治   5篇
  2024年   1篇
  2023年   3篇
  2021年   1篇
  2020年   1篇
  2018年   3篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
11.
采用两种不同形态(固定生物膜和颗粒态)的厌氧氨氧化菌(AnAOB),考察了其对磁分离出水的脱氮性能、氮负荷的差异,同时从分子生物学的角度分析了微生物群落结构的变化.结果表明:采用自模拟污水,35℃恒温、不同水力停留时间(HRT)条件下,两个反应器对NH4+-N和NO2--N的去除率均大于90%.此外,反应器内的微生物群落结构也发生改变,固定生物膜和颗粒反应器中Candidatus Kuenenia菌属消失,Candidatus_BrocadiaCandidatus_Jettenia成为体系厌氧氨氧化优势菌属,相对丰度分别上升至0.89%、0.63%(固定生物膜)和8.79%、2.92%(颗粒).采用磁分离出水,随着HRT的降低,两种形态的厌氧氨氧化菌对NH4+-N和NO2--N去除率均在80%以上.反应器中厌氧氨氧化菌Candidatus_BrocadiaCandidatus_Jettenia的相对丰度明显下降,最终稳定维持在0.7%左右,并伴随异养菌的出现.  相似文献   
12.
分别采用两段式装置(升流式水解酸化池+SBR(R1))和一段式SBR(R2及R3)小试装置,处理实际污水(R1及R2)及人工配水(R3),考察了不同水源对好氧颗粒污泥的粒径分布、沉降性能以及微生物群落的影响。结果显示,大多数颗粒的粒径均集中在0.12~0.3 mm之间,在R1、R2及R3中的占比分别为32.78%、38.61%和50.28%。当粒径介于0.3~0.5 mm、大于0.5 mm时,R1与R2中的颗粒分配均显著高于R3中的颗粒分配。结果表明,低浓度人工配水(COD均值480 mg·L-1)易形成中等粒径的颗粒,而低浓度实际污水(COD均值173 mg·L-1)更易形成较大的颗粒。当体积交换比从90%降为50%,R1和R3的 SVI30/SVI5维持在0.85以上,R2的SVI30/SVI5出现下降的趋势,这可能是进水中较高的悬浮颗粒引起的污泥轻微膨胀所致。3个主反应器取污泥(分别记S1、S2及S3)进行高通量分析,氨氧化菌Nitrosomonas、 氨氧化古菌Nitrososphaera、 反硝化聚磷菌 Dechloromonas等脱氮除磷优势菌属在S1、S2中的相对比例明显高于在S3中的相对比例。 丝状菌方面,在有机负荷率(OLR)较低条件(0.91 kg· (m3·d)-1)下,有利于Aquaspirillum、Enhydrobacter的生长,而较高的OLR(>0.91 kg· (m3·d)-1)有利于Acinetobacter的生长。污水中多种类的有机物,不仅有利于形成致密的胞外聚合物,而且可提高脱氮除磷优势菌属在颗粒污泥中的相对比例。  相似文献   
13.
为测定水节霉发生地河水中ρ(SVOCs)(SVOCs为半挥发性有机物),比较了LLE(液液萃取)和SPE(固相萃取)前处理法提取加标空白水样中ρ(SVOCs)的GC-MS/SIM测定结果,确定并采用重现性好的SPE-GC-MS/SIM法测定了水节霉发生地河水中的ρ(SVOCs). 结果表明,LLE和SPE法对SVOCs的加标回收率分别为41.8%~121.5%和31.5%~124.4%,相对标准偏差分别为6.0%~18.0%和0.9%~14.5%,二者回收率相差不大,但SPE法的相对标准偏差小于LLE法,SPE法重现性较好,因此采用SPE-GC-MS/SIM法测定2011年2月水节霉发生地河水中的ρ(SVOCs),共检出29种SVOCs,其中ρ(邻苯二甲酸二乙酯)、ρ(∑PAHs)、ρ(硝基苯)、ρ(1,2-二氯苯)和ρ(1,4-二氯苯)分别为1 020.59、532.14、43.39、38.52和19.57 ng/L,均未超出GB 5749—2006《生活饮用水卫生标准》相关限值,表明水节霉发生地未发生SVOCs污染.   相似文献   
14.
为解决城市污水厂尾水再生利用时ρ(TN)高的问题,采用反硝化MBBR(移动床生物膜反应器)对城市污水厂尾水进行反硝化脱氮,并重点研究不同温度下分别以聚乙烯和聚丙烯为填料的反硝化MBBR的运行效果. 结果表明:在HRT(水力停留时间)为12 h、温度分别为13、19、25和30 ℃时,NO3--N去除率和反硝化能力变化不大,聚乙烯和聚丙烯反硝化MBBR的NO3--N去除率分别为80.1%~85.0%和78.2%~84.0%,二者的反硝化能力分别为6.7~7.1和6.5~7.0 mg/(L·h);较长的HRT弥补了低温时反硝化速率低的不足;随温度增加,生物量逐渐增加,但CODCr和DOM(溶解性有机物)的去除率变化不明显. 三维荧光图谱表明,出水中主要的DOM(溶解性有机质)为类色氨酸和类富里酸,聚乙烯和聚丙烯反硝化MBBR对DOM总荧光强度的去除率分别为47.6%~52.5%和24.1%~35.8%. 填料上的微生物以杆菌、丝状菌和球菌为主. 综合考虑脱氮效能和有机物污染物去除效能,聚乙烯和聚丙烯反硝化MBBR深度脱氮的最佳温度均为25 ℃.   相似文献   
15.
为探究反硝化除磷低碳工艺的实际效果,采用序批式反应器(SBR)根据底物反应速率来调节底物的流加速率,并以温度(20±2) °C、pH(7.5±0.2)和溶解氧(DO)为0的反应条件富集反硝化菌群。得到可同时利用亚硝酸盐和硝酸盐为电子受体的反硝化菌群,将其添加至厌氧-缺氧-好氧(A2/O)工艺中,以刺激反硝化细菌在反应器中发挥生物除磷功能,并开展工艺启动研究。结果表明:在加入反硝化菌群后,A2/O工艺发生了明显的反硝化除磷反应,且系统运行稳定;反硝化除磷途径的TP去除负荷均值约为0.014 8 kg·(m3·d)−1;厌氧出水TP平均值为11.95 mg·L−1,且缺氧吸磷量与好氧吸磷量的平均比率约为2.40,即平均反硝化除磷率高达73.34%。这表明在单污泥A2/O工艺中成功实现了反硝化除磷的启动,从而证明了反硝化菌群的生物强化作用,其中的反硝化除磷功能菌群的相对优势菌属包括DechloromonasRhodobacterThermomonas等。本研究可为探索基于传统活性污泥系统的低碳生物脱氮除磷工艺,并更好地利用反硝化除磷菌(DPAOs)提供了案例参考。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号