首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   15篇
  国内免费   89篇
废物处理   2篇
综合类   109篇
基础理论   2篇
污染及防治   30篇
  2023年   2篇
  2022年   3篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2017年   7篇
  2015年   4篇
  2014年   3篇
  2013年   10篇
  2012年   13篇
  2011年   15篇
  2010年   13篇
  2009年   10篇
  2008年   14篇
  2007年   14篇
  2006年   5篇
  2005年   4篇
  2004年   2篇
  2003年   3篇
  2002年   5篇
  2001年   4篇
  1998年   4篇
排序方式: 共有143条查询结果,搜索用时 15 毫秒
131.
二氯甲烷降解菌的研究   总被引:10,自引:1,他引:9       下载免费PDF全文
通过驯化、筛选和富集培养,从制药厂(Y)和农药厂(N)生化曝气池的活性污泥中分离到2株能以二氯甲烷为唯一碳源和能源而生长的菌株.菌种初步鉴定为假单胞杆菌属和放线菌科分枝杆菌属.由正交试验得出GD11、GD23两株菌的最适培养条件:GD11温度28.5℃, pH值6.0,纱布层数6;GD23温度25℃,pH值7.2,纱布层数4.研究发现NaCl浓度对菌株的降解率有不同程度的抑制作用.  相似文献   
132.
采用上流式活化沸石滤料曝气生物滤池(AZBAF)对杭州市某微污染地表源水进行生物预处理.结果表明,活化沸石的高效吸附作用可使AZBAF通过自然挂膜实现快速启动.在水力负荷1.2m/h,气水比为(3~1):1条件下,AZBAF对TOC和CODMn的去除率分别为40%~60%和10%~27%,尤其对小分子量(MW<1kDa)有机物具有良好的降解作用.同时系统对NH3-N的去除率保持在90%以上.污染物的去除主要发生在滤池30cm以下部分,这与其中微生物的数量和活性分布规律一致.暂时停运(5~10d和35d)对生物过滤影响较小,系统重启后可在6~8h和24h内基本恢复至原有处理水平.  相似文献   
133.
绿色荧光蛋白基因pEGFP经CaCl2转化法标记E.coli JM109菌株,获得的标记菌株作为模式细菌接种含50μg/mL氨苄的LB培养基,在摇瓶中与火山岩颗粒共混培养挂膜(37℃,120r/min,16h).用激光共聚焦扫描显微镜摄取获得火山岩填料生物膜250μm×250μm区域不同层面的图片堆,所获图片堆经COMSTAT程序处理可以获得相关的定量化参数,如16h生物膜平均厚度为0.120844μm,生物膜最大厚度为10.5μm,生物膜体积为0.136986μm3/μm2,生物膜表面积21338.1μm2,生物膜比表面积为3.36854μm2/μm3.该方法也可以扩展至其他绿色荧光蛋白基因标记细菌的生物膜结构定量化.  相似文献   
134.
生物转鼓反硝化净化一氧化氮废气   总被引:5,自引:1,他引:4       下载免费PDF全文
采用自行研制的生物转鼓(RDB)反应器处理NO废气,考察了RDB净化NO的反硝化效率.结果表明,在28℃、pH6.5~7.5、转鼓转速0.5r/min、营养液更新2L/d条件下,挂膜历时12d完成.随着转鼓转速的增加,生物膜和液膜表面更新速率提高,传质效率增加,NO反硝化效率提高;当转速>0.5r/min时,液膜增厚过度增加了传质阻力,NO反硝化效率降低.空床停留时间(EBRT)是决定反硝化效率的重要因素,当进气NO处理负荷一定时,随着EBRT由130s下降到26s,NO的净化效率也由99.7%下降至81.5%.  相似文献   
135.
亚硝酸盐为电子受体的反硝化除磷工艺特征   总被引:2,自引:0,他引:2       下载免费PDF全文
采用序批式污泥培养方式,探讨了NO2-为电子受体的反硝化除磷工艺特征.结果表明,通过逐步增加进水中NO2-浓度并取代NO3-,可有效驯化反硝化聚磷菌(DPAO)对较高浓度NO2-(以N计,30mg/L)的有效利用.DPAO可根据电子受体的变化作出动态响应,进而影响系统的除磷效能.在NO3-条件下,系统中存在2 类DPAO:DPAO35(以NO2-或NO3-为电子受体)和DPAO5(以NO3-为电子受体);作为系统的优势功菌,DPAO 占总VSS 的40%~61%.随着进水中NO3-的减少和NO2-的增加,DPAO5 被缓慢淘洗出系统,DPAO 比例减少为28%~41%,同时引起聚糖菌(GAO)比例从31%~52%升至54%~67%,而除磷效率从84%降至66%.化学计量学显示厌氧&#8710;Gly/&#8710;HAc 和好氧&#8710;Gly/&#8710;PHA 比值(C/C)分别由0.53 和0.43 升至0.78 和0.51.  相似文献   
136.
间歇曝气对硝化菌生长动力学影响及NO-2积累机制   总被引:2,自引:2,他引:0  
采用间歇曝气方法处理低氨氮浓度生活污水,在SRT 10、 5、 2.5和1.25 d条件下,SBR反应器出水中NO-2含量(以N计,下同)为18、 19、 14和5 mg/L,积累率达到73%、 85%、 91%和78%,而连续曝气SBR仅为14%、 21%、 31%和34%;同时氨氮去除率维持在97%、 95%、 76%和39%,与连续曝气SBR的92%、 97%、 71%和47%相当.对硝化菌的生长动力学分析表明,在间歇曝气硝化系统中,氨氧化菌(AOB)可以通过产率系数(YAOB)的增加来提高自身在反应器中的绝对生物量,并补偿因间歇曝气引起的比底物利用速率下降,从而使比增殖速率(μm)和NH+4的氧化速率不变.与此相反,亚硝酸盐氧化菌(NOB)却不具备这种补偿特性,导致其μm和对NO-2氧化速率降低,引起了NO-2在出水中积累.  相似文献   
137.
沸石滤料曝气生物滤池处理水产养殖废水的工艺特性   总被引:8,自引:2,他引:6  
采用上流式沸石滤料曝气生物滤池(ZBAF)对水产养殖废水进行处理.结果表明,沸石的高效吸附作用可使系统获得快速启动,异养菌和硝化菌生物膜的成熟分别只需7d和25d;系统在水力负荷0.25m/h及气水比20∶1工艺条件下运行效能最佳,COD和NH+4-N去除率分别稳定在85%和70%左右.通过对ZBAF滤柱沿程水质、微生物等指标分析,异养菌和硝化菌主要聚居区分别在滤料层下端和上端,DO值的低谷位置可作为其聚居区分界线;生物量(磷脂-P)和生物活性(好氧速率)沿高程的分布大体一致,其最大值均出现在滤柱底部,分别为114.12 nmol/g和0.67 mg/(g.h).  相似文献   
138.
生物过滤塔和生物滴滤塔净化α-蒎烯性能比较   总被引:2,自引:0,他引:2  
分别采用以木屑/泥炭为填料的生物过滤塔(BF)和以聚氨酯小球为填料的生物滴滤塔(BTF)净化α-蒎烯废气,比较两者的挂膜时间及对α-蒎烯的降解性能.结果表明,采用气液相联合方法,过滤塔和滴滤塔分别在21d和27d内完成挂膜;扫描电镜观察表明,填料上生物膜菌群生长良好,优势菌为杆菌和球菌.在α-蒎烯进口浓度80~2200mg.m-3、空床停留时间(EBRT)29~102s条件下,两者对α-蒎烯均有较好的去除效果,过滤塔与滴滤塔的最大去除负荷分别为50g.m-.3h-1和43g.m-.3h-1;滤塔中CO2生成量与α-蒎烯降解量之间呈线性关系,通过线性拟合得出过滤塔与滴滤塔的α-蒎烯矿化率分别为74%与68%,滤塔中减少的α-蒎烯主要被微生物利用而去除.菌落数(CFU)分析表明,在挂膜阶段滤塔微生物数量增长明显,稳定运行阶段菌落数随着EBRT的延长而增加,在EBRT102s条件下单位反应器空间内过滤塔和滴滤塔菌落数分别为5.52×1014cfu.m-3和1.84×1014cfu.m-3.  相似文献   
139.
文章对V2O5/ACF(活性炭纤维)进行低温选择性催化还原(SCR)NO的影响研究。实验表明:ACF用硝酸处理形成ACFN,然后采用等体积浸渍法制备V2O5/ACFN催化剂,NO脱除率明显增加。同时研究了V2O5负载量、反应温度、NH3初始浓度、NO初始浓度、O2含量等因素对NO脱除效率的影响,发现V2O5/ACFN在180℃低温时,在NH3/NO为1.1、NO初始体积分数1000×10-6和O2体积分数5%时NO脱除效率较高。  相似文献   
140.
间歇曝气对硝化菌生长动力学影响及NO_2~-积累机制   总被引:1,自引:0,他引:1  
采用间歇曝气方法处理低氨氮浓度生活污水,在SRT 10、 5、 2.5和1.25 d条件下,SBR反应器出水中NO-2含量(以N计,下同)为18、 19、 14和5 mg/L,积累率达到73%、 85%、 91%和78%,而连续曝气SBR仅为14%、 21%、 31%和34%;同时氨氮去除率维持在97%、 95%、 76%和39%,与连续曝气SBR的92%、 97%、 71%和47%相当.对硝化菌的生长动力学分析表明,在间歇曝气硝化系统中,氨氧化菌(AOB)可以通过产率系数(YAOB)的增加来提高自身在反应器中的绝对生物量,并补偿因间歇曝气引起的比底物利用速率下降,从而使比增殖速率(μm)和NH+4的氧化速率不变.与此相反,亚硝酸盐氧化菌(NOB)却不具备这种补偿特性,导致其μm和对NO-2氧化速率降低,引起了NO-2在出水中积累.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号