首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   15篇
  国内免费   89篇
废物处理   2篇
综合类   109篇
基础理论   2篇
污染及防治   30篇
  2023年   2篇
  2022年   3篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2017年   7篇
  2015年   4篇
  2014年   3篇
  2013年   10篇
  2012年   13篇
  2011年   15篇
  2010年   13篇
  2009年   10篇
  2008年   14篇
  2007年   14篇
  2006年   5篇
  2005年   4篇
  2004年   2篇
  2003年   3篇
  2002年   5篇
  2001年   4篇
  1998年   4篇
排序方式: 共有143条查询结果,搜索用时 15 毫秒
31.
好氧颗粒污泥共代谢降解MTBE及微生物群落研究   总被引:5,自引:1,他引:4  
以MTBE为目标污染物、乙醇为共代谢基质,在SBR反应器中成功实现了好氧污泥的颗粒化.反应器内污泥完全颗粒化后,MTBE进水浓度提高至400mg·L-1左右,出水浓度可稳定在5rag·L-1以下,去除率高达98.5%以上(其中挥发量约占25%).颗粒污泥结构致密,外观呈椭球形,表面微生物群落主要以球菌和短杆菌为主.序批实验表明,MTBE生物降解速率符合Mirhaelis-Menten方程,其单位时间内颗粒污泥(以干污泥计)降解MTBE的最大降解速率值为20.9 mg·g-1·h-1.PCR-DGGE图谱表明,颗粒污泥内微生物种群丰富,且稳定运行阶段微生物种群和结构呆保持高度稳定.克隆测序结果表明,降解MTBE的好氧颗粒污泥反应器优势菌群主要为Flavobacteria,et-proteobacteria,γ-Porteobacteria、Actinobacteria.  相似文献   
32.
生物滴滤塔反硝化净化NO 废气的启动   总被引:6,自引:0,他引:6       下载免费PDF全文
采用低浓度NO 废气作为气相氮源、硝酸钠作为液相氮源,在序批式活性污泥法反应器(SBR)中的NO 反硝化菌驯化成熟的基础上,研究了生物滴滤塔的启动过程.结果表明,在室温、NO 进气浓度(160mg/m3)、停留时间(EBRT)113s 的条件下,接种驯化成熟种污泥的生物滴滤塔在9d 内完成挂膜.硝酸盐是影响驯化过程中NO 净化效果和N2O 产生量的重要因素,添加适量硝酸盐有助于NO 反硝化菌的正常生长,提高NO 净化效率;但硝酸盐过多时会导致中间产物N2O 的累积.在滴滤塔挂膜启动期间,循环液吸光度、填料层压力损失与NO 净化效率呈正相关性,可作为衡量生物滴滤塔挂膜启动完成的重要指标.  相似文献   
33.
有机碳源和溶解氧对亚硝酸盐生物硝化的影响研究   总被引:2,自引:0,他引:2  
从城市污水处理厂的活性污泥中纯化分离到高活性硝化菌株N-20(Nitrobacter sp.),在一种新型材料Carbon Foam的表面挂膜;通过对菌株N-20进行摇瓶试验,选择添加有机碳源的种类,将其在pH7.5~8.0、温度28℃的条件下,分别以NaNO2和K2HPO4为氮源和磷源,通过生物滤塔中的液相连续试验,考察在不同DO的条件下有机碳源对硝化作用的影响规律。结果表明,以葡萄糖作为有机碳源,DO≥2mg/L,葡萄糖低于20mg/L时,生物滤塔内可进行正常硝化,NO2^--N的硝化去除率维持在90%左右,随着葡萄糖浓度的增加,硝化去除率下降到70%;DO≤2mg/L,葡萄糖对硝化作用的抑制增强,当葡萄糖为200mg/L时,生物滤塔中NO^2-—N的硝化去除率仅为32%。  相似文献   
34.
提高一氧化氮(NO)的氧化效率对于提高生物法处理该类废气的净化效率具有重要意义。实验研究了低温等离子体在脉冲电晕条件下氧化废气中NO的过程,考察了不同峰值电压、氧气含量、气体停留时间和添加有机物等因素对提高NO氧化效率的影响。结果表明:低温等离子法可有效地提高NO的氧化效率,主要产物为NO2;室温条件下,当进气NO浓度590mg/m^3、脉冲频率50Hz时,增大峰值电压、气体停留时间和进气中的氧气含量可提高NO的氧化效率;在最适峰值电压15kV,气体停留时间5s时,NO氧化效率为20%;在进气NO中添加甲苯、乙醇后,NO氧化效率可增加至30%以上,甲苯的效果要好于乙醇。  相似文献   
35.
生物滴滤池处理二氯甲烷废气研究   总被引:9,自引:0,他引:9       下载免费PDF全文
 在f50750mm装有聚丙烯散堆填料的生物滴滤池内进行二氯甲烷废气处理可行性研究.由工厂活性污泥经驯化培养得到的菌种在此填料上挂膜约需30d.空塔气速、进口浓度对二氯甲烷的去除率有较大影响.当二氯甲烷进口浓度为0.70~3.12g/m3、空塔气速为30.6~122.4m/h时,二氯甲烷的去除率为45.1%~99.1%.滴滤池中的酸性环境对二氯甲烷的降解有影响.  相似文献   
36.
采用可利用甲基叔丁基醚(methyl tert-butyl ether,MTBE)为唯一碳源和能源生长的1株β-Proteobacteria菌进行MTBE在密闭系统中的降解试验,确定了该菌降解MTBE的最适条件为:培养液初始pH值7.2,初始细胞浓度107 cells/mL,初始MTBE浓度为25mg/L.考察了密封培养系统内培养液溶解氧对降解效果的影响,结果表明,在培养系统密闭前充入氧气可提高菌体对MTBE的降解速率.以气相色谱-质谱联用法检测到MTBE降解主要中间代谢产物是叔丁基醇、异丙醇、丙酮.在选择离子扫描模式下定量分析,得到降解过程中主要中间代谢产物的浓度变化曲线,据此推断MTBE的降解途径属于"丙酮途径".  相似文献   
37.
生物滤床中一氧化氮的好氧去除过程研究   总被引:1,自引:3,他引:1  
以美国Ultramet公司生产的Carbon-Foam为滤料,应用生物滤床处理NO模拟废气,研究了生物滤床在好氧条件下对NO的处理效果,并对NO去除过程的作用机理进行了探讨.研究结果表明,NO的去除效率随空床停留时间(EBRT)的增加而增加,在EBRT为6min、进口NO浓度为107.14mg.m-3时,NO去除效率为63%;随着进口浓度的提高,NO去除效率降低,而NO消除负荷增加.生物滤床中NO的去除过程由微生物硝化和化学氧化共同作用完成,其中以微生物硝化作用为主.化学氧化作用包括气相过程和液相过程2部分,当EBRT<4.6min时,液相中的化学氧化作用大于气相;当EBRT>4.6min时,气相中的化学氧化作用大于液相.当EBRT≤2min时,传质是NO去除过程的控制步骤,此时,微生物硝化作用和液相中的化学氧化作用均受传质过程控制.  相似文献   
38.
利用正己烷降解菌Pseudomonas mendocina NX-1和二氯甲烷(DCM)降解菌Methylobacterium rhodesianum H13强化生物滴滤塔(BTF)同时净化不同疏水性的正己烷和DCM混合废气,研究了挂膜启动阶段及稳定运行阶段BTF对污染物的去除性能与限制因素及生物膜相的特性变化.结果表明,在正己烷和DCM浓度均为100 mg·m-3,停留时间(EBRT)为60 s的条件下,运行25 d即可完成BTF的启动,正己烷和DCM的去除率分别可达到65%和100%.系统稳定运行时,正己烷和DCM的最大去除负荷分别为16.1 g·m-3·h-1和92.0 g·m-3·h-1.正己烷和DCM的去除过程分别受到传质限制与反应限制影响.BTF稳定运行后,塔内生物膜胞外聚合物(EPS)中蛋白质(PN)含量逐渐增加至启动时的2.7倍,蛋白质与多糖的比值(PN/PS)从0.28增加至0.96.生物膜表面相对疏水性从21%增加至66%,Zeta电位从-12.7 mV降低至-9.2 mV.压降的模拟结果与实验数据良好拟合(R2>0.96).  相似文献   
39.
介质阻挡放电对氯苯的降解特性及其产物分析   总被引:2,自引:1,他引:1  
鉴于生物法对难生物降解性、低水溶性的VOCs去除效果不佳,因此开发高效的前处理技术来提高生物法的净化能力已成为新的热点.本实验以生物可降解性差的氯苯为目标污染物,以介质阻挡放电低温等离子体(DBD)为生物法的前处理技术,通过调节DBD反应器的工艺参数,研究其对氯苯的降解效果,考察了进气浓度、停留时间、湿度、峰值电压等因素对去除率的影响,并对尾气进行初步分析.结果表明,DBD能有效去除氯苯废气,氯苯去除率随峰值电压的升高而增大;当电压≥12k V时,停留时间对氯苯的降解影响较小;65%~75%为氯苯降解的最佳湿度范围.通过产物分析,发现产物的种类和浓度随着放电电压的升高而增多增大,主要是以有机酸类和氯代烃为主.产物的水溶性较好;可生化性随着电压升高而增强;随电压升高,小球藻受到的生长抑制作用越来越小,当电压达到20k V时,反而有促进作用.降解过程中产生的O3量随着电压的升高而增多,并且在同一电压下臭氧产生量随着湿度的增大而增多.  相似文献   
40.
从某水厂的生物除锰滤池中分离出1株新的高效锰氧化菌,命名为H1.通过生理生化及16S rDNA序列对比分析鉴定为氨基杆菌(Aminobacter sp.),国内外未曾有对该菌株具有锰氧化能力的相关报道.本文对Aminobacter sp.H1的微生物特性、锰氧化机制及生成的生物氧化锰的性质进行了研究.结果表明,Aminobacter sp.H1的锰耐受浓度高达50 mmol·L-1,可完全去除浓度低于10 mmol·L-1的Mn(Ⅱ).菌株H1对Mn(Ⅱ)的氧化主要是通过产生锰氧化活性因子和碱性代谢产物提高pH两个因素共同作用的结果,活性因子细胞内合成后分泌到细胞外起作用.氧化过程中发现有Mn(Ⅲ)中间体出现,XRD、XPS、SEM-EDX等分析菌株H1介导生成的生物氧化锰发现,生物氧化锰与菌体结合紧密,弱结晶、无固定形态,成分主要为MnCO3、MnOOH、Mn3O4和MnO2等.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号