首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   6篇
  国内免费   50篇
安全科学   5篇
废物处理   6篇
综合类   53篇
基础理论   1篇
污染及防治   31篇
评价与监测   1篇
  2024年   1篇
  2023年   1篇
  2022年   4篇
  2021年   5篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2017年   6篇
  2016年   5篇
  2015年   11篇
  2014年   7篇
  2013年   7篇
  2012年   8篇
  2011年   2篇
  2010年   2篇
  2009年   6篇
  2008年   5篇
  2007年   2篇
  2006年   3篇
  2005年   3篇
  2004年   6篇
  2003年   2篇
  2000年   1篇
  1999年   1篇
  1993年   3篇
排序方式: 共有97条查询结果,搜索用时 93 毫秒
11.
姬倩  彭党聪  赵文钊 《环境工程学报》2019,13(12):3012-3018
衰减系数是表征微生物增长的重要动力学参数,与所处环境密切相关。采用基质利用速率测定方法,以厌氧氨氧化工艺中最常见的厌氧氨氧化菌(Candidatus Brocadia)为对象,探讨了其在缺氧(NO_2~--N、NO_3~--N)及厌氧环境下的衰减系数。结果表明:基质利用速率测定方法可有效避免由于其他细菌的衰减而引起的实验误差;缺氧(NO_2~--N、NO_3~--N)及厌氧环境下厌氧氨氧化菌的衰减系数依次为0.035 2 d~(-1)、0.025 7 d~(-1)和0.051 2 d~(-1),相比于其他自养菌,厌氧氨氧化菌的衰减系数较小。在进行污泥保存时,维持NO_3~--N的缺氧环境有利于厌氧氨氧化菌活性和数量的保存。  相似文献   
12.
采用SBR反应器(厌氧/缺氧/好氧工艺),分别研究了乙酸盐及硝酸盐浓度变化对反硝化除磷的影响特性.试验结果表明,当进水COD浓度>230 mg/L时,乙酸盐浓度的变化对释磷、除磷速率等影响并不显著.在硝酸盐浓度<30 mg/L时,硝酸盐浓度越高,缺氧段除磷速率也就越高.在C/P>23,C/N>5条件下,SBR系统对磷、氮去除率在90%以上.  相似文献   
13.
SBR中生物除磷颗粒污泥的反硝化聚磷研究   总被引:2,自引:1,他引:1  
反硝化聚磷菌(DNPAOs)可利用厌氧储存的聚.3.羟基丁酸(PHB)以硝酸盐和亚硝酸盐为电子受体进行过量吸磷和反硝化,从而达到在低碳源下脱氮除磷的双重目的.本试验在SBR反应器中,采用厌氧,缺氧/好氧(A/A/O)交替运行的方式.将富集聚磷菌(PAOs)的颗粒污泥成功地诱导为具有反硝化聚磷能力的颗粒污泥.诱导结束后P的去除率在90%以上,NOx-N的去除率在93%以上,厌氧段释磷量在25-33 mg/L,缺氧段每去除lg NOx-N吸收P约1.3 g;典型周期运行结果显示,厌氧段最大比释磷速率(SRPR)为18.39 mg/(g.h),缺氧段最大比吸磷速率(SUPR)为23.72 mg/(g·h),最大比反硝化速率(SDNR)为18.19mg/(g·h),好氧段最大SUPR为17.15 me,/(g·h):颗粒污泥中DNPAOs的数量由诱导前的14.9%增加到80.7%.与除磷颗粒污泥相比.反硝化聚磷颗粒污泥沉速提高0.16-0.7倍,比重提高0.003 1.  相似文献   
14.
刘小英  姜应和  郭超  彭党聪 《环境科学》2009,30(9):2655-2660
以絮状活性污泥为接种污泥,乙酸钠为碳源,在SBR反应器内采用水力筛选的方法进行生物除磷颗粒污泥培养,然后诱导为反硝化聚磷颗粒污泥,探讨2种颗粒污泥除磷特性.结果表明,在厌氧/好氧(A/O)交替运行条件下,82d后培养出生物除磷颗粒污泥,污泥颜色呈淡黄色,粒径为0.5~1.5 mm,沉速为20~30 m/h,含水率为94%,密度为1.043 9,SVI在50 mL/g以下;437d时污泥最大比释磷速率(SRPR)为67.7 mg/(g.h),最大比吸磷速率(SUPR)为43.2 mg/(g.h),污泥中总磷的含量(TP/SS)为6.5%;448 d时改变运行条件为厌氧/缺氧/好氧(A/A/O)进行反硝化聚磷试验,653 d时反硝化聚磷颗粒污泥最大SRPR为30mg/(g.h),最大缺氧SUPR为27.9 mg/(g.h),TP/SS为6.3%.生物除磷颗粒污泥和反硝化聚磷颗粒污泥具有较强的除磷能力.  相似文献   
15.
综述了USB反应器进行生物反硝化的历史沿革、研究现状 ,并对其在研究中存在的问题进行了描述。最后 ,对USB反应器进行生物反硝化的应用前景作了科学的分析  相似文献   
16.
热态钢渣液-液混熔法制备微晶玻璃   总被引:1,自引:1,他引:0  
以液态钢渣为原料直接制备微晶玻璃,可充分利用渣中的物质和热量,避免传统钢渣处理过程中产生的环境污染和热量耗散。先将40%的电炉水淬钢渣和60%的辅料(硅石粉、刚玉粉和氧化钠等)粉末同时在1 450℃下分别熔融成液态,然后将液态钢渣倒入熔融的辅料液体中混合并保温1 h,得到的玻璃熔体经过浇注、退火、热处理过程制得微晶玻璃样品。利用XRD、SEM对微晶玻璃试样的微观结构进行表征,采用标准方法进行性能测试。结果表明:经700℃核化2 h,870℃晶化1 h后微晶玻璃的理化性能较好。主晶相为透辉石[(Mg6Al2Fe2)Ca(Si1.5Al5)O2]和普通辉石[Ca(Mg,Al,Fe)Si2O6],晶体形貌为颗粒状,直径为0.05~0.1μm,分布均匀。研究对开发热态钢渣资源化利用具有重要意义,提供了一种新途径。  相似文献   
17.
活性污泥法低温运行中的污泥膨胀主要是由丝状菌引起,微丝菌(M.Parvicella)则是污泥膨胀中的优势丝状菌.针对微孔曝气变速氧化沟中试系统中因低温引起的污泥严重膨胀及其污泥硝化能力降低的问题,采取增大曝气量快速培养污泥硝化菌含量,再逐渐增加A:O比为0,0.1,0.5,1.1,1.8提高反硝化能力,从而恢复污泥脱氮能力.在恢复期间,污泥絮体中的疏水性M.Parvicella附着于反硝化产生气体上,在选择池和氧化沟表面形成浮泥,对其进行去除,以减少絮体中丝状菌含量,提高硝化菌含量及其硝化能力.同时对不同微丝菌含量的污泥絮体(沟内混合液和表面浮泥)的硝化和反硝化速率进行测定,结果表明微丝菌含量高的活性污泥其硝化能力较弱,而快速反硝化能力较强,则对慢速和内源反硝化影响不大.进一步证明M.Parvicella也是除了DO浓度,水温和负荷之外影响活性污泥硝化能力和污泥沉降性能的重要因素之一.  相似文献   
18.
生物膜系统中部分反硝化实现特性   总被引:1,自引:0,他引:1  
以移动床生物膜反应器(moving-bed biofilm reactor,MBBR)为例,考察生物膜系统中部分反硝化NO2--N积累特性,并通过耦合厌氧氨氧化验证生物膜系统中部分反硝化耦合厌氧氨氧化(partial denitrification with anaerobic ammonium oxidation,PD+ANAMMOX)工艺的可行性.结果表明,在C/N为3.0,填充率为20%的条件下,经过40 d的富集培养,实现部分反硝化,NO2--N积累率达(69.38±3.53)%;接种生物膜NO3--N还原酶(nitrate reductase,NAR)活性为0.03 μmol·(min·mg)-1,NO2--N还原酶(nitrite reductase,NIR)活性为0.18 μmol·(min·mg)-1,富集培养后生物膜NAR活性增至0.45 μmol·(min·mg)-1,NIR活性降至0.02 μmol·(min·mg)-1,从酶学角度验证了部分反硝化实现;高通量测序结果显示,Thauera属从0.3%增加至37.27%,在微生物群落中占主导地位,该菌属被认为是部分反硝化过程的主要功能菌.随后与厌氧氨氧化耦合,出水总氮达(6.41±1.50) mg·L-1,总氮去除率达(88.16±2.71)%,证明了生物膜系统中PD+ANAMMOX的可行性及稳定性.  相似文献   
19.
以Ca.Brocadia为主要种属的厌氧氨氧化颗粒污泥和生物膜为研究对象,通过测定不同温度下厌氧氨氧反应活化能以探讨温度对以不同污泥形态存在的厌氧氨氧化菌的短期影响.结果表明,在15~25℃和25~35℃,以颗粒污泥及生物膜形态存在的厌氧氨氧化菌的反应活化能不同.在15~25℃,颗粒污泥和生物膜中的厌氧氨氧化反应活化能...  相似文献   
20.
混凝工艺因成本低廉、操作简单而成为地表水处理的常见工艺,但现有混凝剂存在对地表水中溶解性有机物去除率较低的问题。针对我国地表水体普遍存在的有机微污染问题,设计一种通过壳聚糖/羧甲基纤维素钠于水中原位生成的复凝聚絮体以代替传统混凝剂并去除污染物的新工艺,进而将复凝聚技术原位生成网状絮体应用于水污染处理中。选取高岭土和盐酸四环素分别模拟黄河水中的无机胶体和有机微污染物,探究初始浊度、壳聚糖/羧甲基纤维素钠投加质量浓度对两类污染物的去除效率和机理,并进一步对混凝后产生污泥的吸附性能进行研究。结果显示,壳聚糖/羧甲基纤维素钠对不同模拟污染水的浊度去除率都在99%以上,对盐酸四环素-高岭土和黄河水-盐酸四环素中盐酸四环素的最佳去除率分别为40.02%和56.72%,效果明显优于聚合氯化铝(Polyaluminium chloride, PAC)。壳聚糖/羧甲基纤维素钠和高岭土共沉淀产生的污泥能够对水中盐酸四环素进行化学吸附,最高吸附质量比达4.81 mg/g。壳聚糖/羧甲基纤维素钠复凝聚体系对地表水中的无机污染物和有机污染物均有较好的去除效果,且所得污泥具有回用价值,具有良好的应用前景。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号