排序方式: 共有49条查询结果,搜索用时 0 毫秒
21.
博斯腾湖流域沉积物中多环芳烃的时空分布、来源及生态风险评价 总被引:4,自引:0,他引:4
在新疆博斯腾湖及其上游采集了8个表层沉积物和1根湖心沉积柱样品,分析了其中16种多环芳烃(PAHs)的含量,对其时空分布特征、来源和潜在生态风险进行了研究,并采用~(210)Pb同位素测年法分析了沉积速率和沉积柱的时间跨度.结果表明:表层沉积物样品中PAHs含量范围为57.37~360.24 ng·g~(-1)(干重),开都河沉积物中PAHs以低分子量PAHs(2~3环)为主,博斯腾湖沉积物中PAHs以高分子量PAHs(4~6环)为主.开都河和博斯腾湖沉积物中萘(Nap)、菲(Phe)、苯并(b)荧蒽(BbF)和茚并(1, 2, 3-cd)芘(IP)等单体的含量较高.空间分布呈现出上游河流开都河高于博斯腾湖区,且湖区污染主要集中在湖心处的污染特征.沉积柱样品中15种PAHs含量范围为29.85~211.13 ng·g~(-1),沉积速率为0.18 cm·a~(-1),PAHs组成以5环和6环为主.沉积时间跨度为1852—2016年,PAHs含量峰值出现在1994年.采用比值法对表层沉积物和沉积柱样品进行源解析表明,博斯腾湖流域PAHs主要来源于生物质和煤热解过程,近年来有向煤炭和石油燃烧复合源转变的倾向.效应区间低/中值法(ERL/ERM)和平均效应区间中值商法(M-ERM-Q)评估结果表明,博斯腾湖及其上游表层沉积物中PAHs表现出低生态风险. 相似文献
22.
利用大气被动干沉降采样技术对兰州河谷盆地13个采样点的15种USEPA优控PAHs的大气干沉降进行了观测研究,并对其污染特征及来源进行了解析.结果表明15种PAHs的年大气干沉降通量范围为7.48~53.94μg·(m~2·d)~(-1),均值为18.65μg·(m~2·d)~(-1);采暖期和非采暖期干沉降通量均在交通最为密集的采样点东岗桥最高,分别为60.85和47.03μg·(m~2·d)~(-1),植被较好的城区黄河边白塔山最低,分别为8.16和6.80μg·(m~2·d)~(-1),背景点官滩沟明显低于其他各采样点,为6.73μg·(m~2·d)~(-1)和4.92μg·(m~2·d)~(-1);PAHs干沉降的族谱特征为:两季节均以3、4环的Phe、Flua、Flu和Pyr为主要污染物,所占比例分别为采暖期87.53%、非采暖期82.73%,而非采暖期5、6环所占比例高于采暖期,推断可能由于较轻组分PAHs由于气温较高易挥发所致;利用主成分分析法进行源解析,结果表明:PAHs大气干沉降主要来自汽车尾气和燃煤炼焦,除交通采样点(东岗桥)外,采暖期燃煤、炼焦为主要贡献源,非采暖期以汽车尾气排放贡献为主.此外,本研究还运用干沉降模型,利用气象数据对城区(城关区环境保护局,JCZ)、工业区(西固区兰苑宾馆,LLH)和七里河区交通干道(职工医院,ZGH)采样点位的大气PAHs干沉降速率进行了模拟计算,3个采样点年均沉降速率分别为0.20、0.15和0.17 cm·s~(-1),相对较小,该沉降速率由该处的风速、气温和下垫面性质等综合气象条件决定.模拟计算与观测的3、4环组分干沉降通量值处于同一数量级,模拟通量值略大于观测值,4环PAHs吻合较好,而3环组分在观测过程中有部分挥发损失. 相似文献
23.
中国西部某规模化电子垃圾拆解厂多氯联苯排放污染特征及职业呼吸暴露风险 总被引:2,自引:0,他引:2
电子垃圾的不规范拆解易造成较严重的有机物、重金属等污染排放.在政府西部大开发战略(WDS)的推动下,电子垃圾回收产业从东部地区向西部地区的转移势必会对西部地区生态环境造成一定的负面影响.本文以西部近年新建的某规模化电子垃圾拆解厂为研究对象,于2016年冬季采集了该厂拆解车间室内外及上风向对照区大气气相、颗粒相(PM_(1.0)、PM_(2.5)、PM_(10))共100个样品,对电子垃圾拆解活动造成的32种PCBs的排放污染水平和特征进行了观测研究,并基于该观测数据对规模化拆解厂的职业环境空气呼吸暴露风险进行了评估.结果表明,拆解车间内外及农家对照点空气中32种PCBs总浓度(∑_(32)PCBs)(气相+颗粒相)范围为0.36~806.65 pg·m~(-3),均值为28.00 pg·m~(-3),总体呈现低氯代(二至四氯)PCBs浓度较高的特征;拆解作业车间内电子垃圾拆解活动导致的PCBs排放主要赋存于颗粒相中(65%),而车间外及农家对照点空气中的PCBs主要分配于气相,分别占比72%和94%;颗粒相PCBs在车间内外的分布特征表现为:四氯PCBs中PCB52、PCB49在PM_(1.0)中的浓度百分比较高,而其他PCBs主要分布在PM_(10)中.车间内外空气中四氯PCBs(气相+颗粒相)浓度最高,三氯PCBs浓度次之,推测主要源于电子垃圾拆解的生产排放;而对照点含有更高的二氯PCBs同族体,初步推测主要来源于上风向外区域PCBs的大气长距离迁移.采样期间规模化拆解厂车间内职业环境空气的呼吸暴露致癌风险(9.62×10~(-12))低于美国EPA的规定限值1.0×10~(-6),处于可接受水平.说明我国对电子垃圾产业的规模化建厂、规范化拆解作业及按环保要求的规范化管理措施对于拆解作业环境的保护、职业工人的健康保护具有积极的作用.但规模化拆解产业依然会带来一定程度的污染物排放,从而对周边环境带来生态风险及存在潜在的职业健康风险. 相似文献
24.
利用PUF大气被动采样器对河西走廊及兰州地区进行了为期1 a,分4个季度的大气样品采集,应用HP6890ⅡGC-ECD对大气中典型有机氯农药六六六(HCHs)和滴滴涕(DDTs)的含量进行了分析.研究结果表明,河西走廊和兰州地区大气中ΣHCHs(α-HCH+β-HCH+γ-HCH+δ-HCH)和ΣDDTs(p,p’-DDT+o,p’-DDT+p,p’-DDE+p,p’-DDD)的平均浓度分别为86.22 pg.m-3和34.06 pg.m-3,研究区ΣHCHs和ΣDDTs的背景浓度平均为54.41 pg.m-3和21.56 pg.m-3,同国内外其它地区相比,污染处于相对较低的水平.总体而言,ΣHCHs和ΣDDTs均表现出秋季浓度相对较高(均值分别为127.4pg.m-3和47.06 pg.m-3)的季节特征,酒泉、安西、张掖三地的HCHs和DDTs污染水平较高,推测与这3个地区的耕地面积和历史使用量较大有关.源解析表明,研究区内的HCHs主要来源于禁用前的历史残留以及林丹的使用,DDTs来源于工业DDTs的近期使用,部分地区如酒泉和安西可能存在三氯杀螨醇的使用.河西走廊和兰州地区人群通过呼吸途径对HCHs和DDTs的暴露水平较低. 相似文献
25.
2022年1月21日,河南郑州“7·20”特大暴雨灾害调查报告公布。经国务院调查组调查认定,这是一场因极端暴雨导致严重城市内涝、河流洪水、山洪滑坡等多灾并发,造成重大人员伤亡和财产损失的特别重大自然灾害。在抗击这场特大暴雨灾害中,“翼龙”应急救灾型无人机连续两天在当地架起“高空基站”,完成了应急通信保障任务。 相似文献
26.
兰州周边地区土壤典型有机氯农药残留及生态风险 总被引:3,自引:0,他引:3
应用Agilent 7890-5975C GC-MSD对兰州及其周边地区16个表层土壤样品中HCHs和DDTs残留水平进行分析,并对兰州周边地区土壤中OCPs的可能来源和生态风险进行了初步研究.结果表明,研究区土壤中HCHs残留范围为8.22×10-2—4.49 ng.g-1,平均值为6.85×10-1ng.g-1;DDTs残留范围为1.41×10-1—120 ng.g-1,平均值为16.9 ng.g-1;DDTs残留较HCHs占优势,约占二者总残留量的96%.α-HCH/γ-HCH比值介于0.18—14,平均值为2.8,推测研究区土壤中HCHs残留源于工业HCHs和林丹的混合源,并且可能存在有周边地区HCHs的大气长距离输送.DDE/DDD比值介于0.35—4.8,平均值为2.1,说明研究区土壤中DDT以有氧方式降解为主;(DDE+DDD)/DDT比值介于0.067—0.69,平均值为0.30,o,p’-DDT/p,p’-DDT比值介于0.091—2.8,平均值为0.60,表明研究区土壤DDTs污染可能主要源于工业源DDTs.与国内其它地区土壤相比,研究区土壤中HCHs和DDTs残留量相对较低;依照国家《土壤环境质量标准》(GB-15618—1995),研究区土壤中HCHs和DDTs残留处于较低水平;研究区土壤中HCHs残留处于较低的生态风险,DDTs残留对于土壤生物和鸟类具有一定的生态风险,而对于哺乳类动物生态风险较低. 相似文献
27.
运用TaPL3.0模型对7种PBDEs同系物在广州地区的长距离迁移潜力(LRTP)和总持久性(Pov)进行了模拟研究,并通过灵敏度分析得到了模型的关键参数.研究结果显示,PBDEs排放至大气中,特征迁移距离(CTD)为296~811km,均值为557km;Pov为19~279d,均值为184d;PBDEs平均约有73.8%分布在土壤中,16.9%分布在沉积物中,9.3%分布在其他三相中.PBDEs排放到水体时,CTD为3090~4291km,均值为3731km;Pov范围为228~854d,均值为731d;平均约92.1%分布在沉积物中,6.8%分布在水相中,1.1%在大气、土壤和植被相中.BDE47迁移潜力最大,BDE209易残留于源区形成点源性污染.PBDEs各同系物主要分布在沉积物和土壤中.随着溴代程度升高,CTD逐渐降低,Pov逐渐升高,与国外研究趋势一致. 相似文献
28.
以DDTs(p, p¢ -DDT, o, p¢ -DDT, p, p¢ -DDD)为研究对象,建立了南京地区DDTs的四级逸度模型,模拟计算了DDTs研究区域环境大气、水体、土壤、沉积物和植物相中的浓度及相间迁移通量.结果表明,以p, p¢ -DDT为例,在水、土壤、沉积物、植物相中的模拟输出浓度分别为9.72×10-9,9.87×10-5,4.61×10-6,8.28×10-6mol/m3.与当地对应环境相中的DDTs实测浓度2.69×10-9,2.41×10-4,8.15×10-6,2.43× 10-5mol/m3在数量级上吻合较好,验证了模型在南京地区的适用性,并预测了2000~2050年间DDTs在各相中浓度的动态变化情况.比较了各城市间多介质环境迁移特征,结果显示,南京地区的DDTs相间迁移过程与杭州地区近似,主要迁移过程依次为:气-土沉降,水-沉积物相沉降,气-水沉降,土-水流失(土壤侵蚀),水-气扩散.但不同于我国北方地区的以气-土沉降,气-水沉降或水-气扩散为主.南京地区早期的农药施用是DDTs的主要来源,占总输入量的97.69%,大气和土壤中的降解则是DDTs的主要消失途径,占总降解量的95.44%~95.96%,其余4.04%~4.56%通过水、沉积物、植物降解和气/水平流输出而消失.今后几十年中,土壤和沉积物成为DDTs的主要储库,占总量的99.28%左右,并且植物相中的浓度已大幅下降. 相似文献
29.
兰州地区DDT的环境多介质迁移和归趋模拟 总被引:7,自引:0,他引:7
利用Level Ⅲ逸度模型模拟了稳态假设下DDT在兰州地区大气、水体、土壤和沉积物中的浓度分布.根据模拟结果计算了相间迁移通量.结果表明:农业施用是该区域DDT的主要来源,其主要的迁移过程是气-土沉降、气-水沉降、土壤侵蚀,土壤中降解和大气平流输出,这是DDT从研究区域消失的主要途径.土壤中DDT占总残留量的99.83%.在大气、水体、土壤和沉积物中的浓度分别为2.80×10-11 mol·m-3,2.72×10-7 mol·m-3,2.47×10-3mol·m-3和3.16×10-5mol·m-3.模型计算浓度与同期实测浓度吻合较好,验证了模型的可靠性,并通过灵敏度分析,确定了模型的关键参数. 相似文献
30.
正信息化一方面加速了安全生产事故信息传播速度,导致安全生产的被关注度空前高涨;另一方面,也为解决安全生产问题带来了"利器"——大数据。当前,大数据正以惊人的速度渗透到越来越多的领域,电商、零售商、IT企业等应用大数据的成功案例屡见不鲜。大数据在安全生产中的应用,最基本的功能就是从海量的安全生产数据中寻找事故发生的规律、预测未来,从而对症下药,有效遏 相似文献