首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31726篇
  免费   350篇
  国内免费   337篇
安全科学   1099篇
废物处理   1644篇
环保管理   4186篇
综合类   4731篇
基础理论   8086篇
环境理论   9篇
污染及防治   8055篇
评价与监测   2296篇
社会与环境   2112篇
灾害及防治   195篇
  2023年   150篇
  2022年   293篇
  2021年   352篇
  2020年   205篇
  2019年   282篇
  2018年   502篇
  2017年   513篇
  2016年   792篇
  2015年   580篇
  2014年   914篇
  2013年   2622篇
  2012年   1124篇
  2011年   1474篇
  2010年   1185篇
  2009年   1260篇
  2008年   1530篇
  2007年   1458篇
  2006年   1324篇
  2005年   1183篇
  2004年   1130篇
  2003年   1069篇
  2002年   1018篇
  2001年   1149篇
  2000年   798篇
  1999年   503篇
  1998年   382篇
  1997年   402篇
  1996年   412篇
  1995年   482篇
  1994年   408篇
  1993年   359篇
  1992年   384篇
  1991年   370篇
  1990年   335篇
  1989年   329篇
  1988年   304篇
  1987年   242篇
  1986年   253篇
  1985年   252篇
  1984年   274篇
  1983年   261篇
  1982年   276篇
  1981年   229篇
  1980年   173篇
  1979年   185篇
  1978年   167篇
  1977年   136篇
  1975年   139篇
  1973年   170篇
  1972年   148篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
861.
Beach waste and litter composition and evolution on popular urban (located in the main nucleus of the municipality) and urbanized (located in residential areas outside the main nucleus) beaches of the Costa Brava (Catalan coast) were assessed during the bathing season. Waste and litter production (amount and composition) were affected by urbanization and varied during the summer. Urban beaches had higher densities of waste deposition and lower percentages of organic, domestic and other miscellaneous waste than urbanized beaches. Litter characteristics were also influenced by type of beach, and varied during the season as a consequence of beach use and cleaning practices, but not environmental factors. Urbanized beaches obtained higher scores for aesthetic quality of sand than urban beaches, and small-sized litter tended to accumulate during the season in the beach of Lloret Centre. The most important problems are management of recyclable materials, litter left by users on the sand, and separation of sand from litter. In addition, current efficiency of mechanical cleaning is low, especially in the withdrawal of cigarette butts. These analyses highlight problems that should be addressed in future management of area beaches.  相似文献   
862.
Tile drained land with phosphorus (P)-rich topsoil is prone to P loss, which can impair surface water quality via eutrophication. We used by-products from steel and energy industries to mitigate P loss from tile drains. For each by-product, P sorption maximum (P(max)) and strength (k) were determined, while a fluvarium trial assessed P uptake with flow rate. Although two ash materials (fly ash and bottom ash) had high P(max) and k values, heavy metal concentrations negated their use in the field. The fluvarium experiment determined that P uptake with by-products was best at low flow, but decreased at higher flow in proportion to k. A mixture of melter slag (<10 mm) and basic slag (high P(max), 7250 mg kg(-1); and k, 0.508 L mg P(-1)) was installed as backfill in eight drains on a dairy farm. Four drains with greywacke as backfill were constructed for controls. The site (10 ha) had P-rich topsoil (Olsen P of 64 mg kg(-1)) and yielded a mean dissolved reactive P (DRP) and total P (TP) concentration from greywacke backfilled drains of 0.33 and 1.20 mg L(-1), respectively. In contrast, slag backfilled drains had DRP and TP concentrations of 0.09 and 0.36 mg L(-1), respectively. Loads of DRP and TP in greywacke drains (0.45 and 1.92, respectively) were significantly greater (P < 0.05) than those from slag drains (0.18 and 0.85, respectively). Data from a farm where melter slag was used as a backfill suggested that slag would have a life expectancy of about 25 yr. Thus, backfilling tile drains with melter slag and a small proportion of basic slag is recommended as an effective means of decreasing P loss from high P soils.  相似文献   
863.
Fertilizing pastures with poultry litter has led to an increased incidence of nutrient-saturated soils, particularly on highly fertilized, well drained soils. Applying litter to silvopastures, in which loblolly pine (Pinus taeda L.) and bahiagrass (Paspalum notatum) production are integrated, may be an ecologically desirable alternative for upland soils of the southeastern USA. Integrating subterranean clover (Trifolium subterraneum) into silvopastures may enhance nutrient retention potential. This study evaluated soil nutrient dynamics, loblolly pine nutrient composition, and loblolly pine growth of an annually fertilized silvopasture on a well drained soil in response to fertilizer type, litter application rate, and subterranean clover. Three fertilizer treatments were applied annually for 4 yr: (i) 5 Mg litter ha(-1) (5LIT), (ii) 10 Mg litter ha(-1) (10LIT), and (iii) an inorganic N, P, K pasture blend (INO). Litter stimulated loblolly pine growth, and neither litter treatment produced soil test P concentrations above runoff potential threshold ranges. However, both litter treatments led to accumulation of several nutrients (notably P) in upper soil horizons relative to INO and unfertilized control treatments. The 10LIT treatment may have increased N and P leaching potential. Subterranean clover kept more P sequestered in the upper soil horizon and conferred some growth benefits to loblolly pine. Thus, although these silvopasture systems had a relatively high capacity for nutrient use and retention at this site, litter should be applied less frequently than in this study to reduce environmental risks.  相似文献   
864.
The effects of chromate on sulfate uptake and assimilation were investigated in the accumulator Brassica juncea (L.) Czern. Seven-day-old plants were grown for 2 d under the following combination of sulfate and chromate concentration: (i) no sulfate and no chromate (-S), (ii) no sulfate and 0.2 mmol L(-1) chromate (-S +Cr), (iii) 1 mmol L(-1) sulfate and no chromate (+S), or (iv) 1 mmol L(-1) sulfate and 0.2 mmol L(-1) chromate (+S +Cr). Despite the toxic effects exerted by chromate as indicated by altered level of reducing sugars and proteins in leaves, the growth of B. juncea was only weakly reduced by chromate, and no variation in chlorophyll a and b was measured, regardless of S availability. Chromium (Cr) was stored more in roots than in leaves, and the maximum Cr accumulation was measured in -S +Cr plants. The significant decrease of the sulfate uptake rates observed in Cr-treated plants was accompanied by a repression of the root low-affinity sulfate transporter (BjST1), suggesting that the transport of chromate in B. juncea may involve sulfate carriers. Once absorbed, chromate induced genes involved in sulfate assimilation (ATP-sulfurylase: atps6; APS-reductase: apsr2; Glutathione synthethase: gsh2) and accumulation of cysteine and glutathione, which may suggest that these reduced S compounds play a role in Cr tolerance. Together, our findings indicate that when phytoremediation technologies are used to recover Cr-contaminated areas, the concentration of sulfate in the plant growth medium must be considered because it may influence the ability of plants to accumulate and tolerate Cr.  相似文献   
865.
In this study, we used chlorofluorocarbon (CFC) age-dating to investigate the geochemistry of N enrichment within a bedrock aquifer depth profile beneath a south central Wisconsin agricultural landscape. Measurement of N(2)O and excess N(2) allowed us to reconstruct the total NO(3)(-) and total nitrogen (TN) leached to ground water and was essential for tracing the separate influences of soil nitrification and ground water denitrification in the collateral geochemical chronology. We identify four geochemical impacts due to a steady ground water N enrichment trajectory (39 +/- 2.2 micromol L(-1) yr(-1), r(2) = 0.96) over two decades (1963-1985) of rapidly escalating N use. First, as a by-product of soil nitrification, N(2)O entered ground water at a stable (r(2) = 0.99) mole ratio of 0.24 +/- 0.007 mole% (N(2)O-N/NO(3)-N). The gathering of excess N(2)O in ground water is a potential concern relative to greenhouse gas emissions and stratospheric ozone depletion after it discharges to surface water. Second, excess N(2) measurements revealed that NO(3)(-) was a prominent, mobile, labile electron acceptor comparable in importance to O(2.) Denitrification transformed 36 +/- 15 mole% (mol mol(-1) x 100) of the total N within the profile to N(2) gas, delaying exceedance of the NO(3)(-) drinking water standard by approximately 6 yr. Third, soil acids produced from nitrification substantially increased the concentrations of major, dolomitic ions (Ca, Mg, HCO(3)(-)) in ground water relative to pre-enrichment conditions. By 1985, concentrations approximately doubled; by 2006, CFC age-date projections suggest concentrations may have tripled. Finally, the nitrification induced mobilization of Ca may have caused a co-release of P from Ca-rich soil surfaces. Dissolved P increased from an approximate background value of 0.02 mg L(-1) in 1963 to 0.07 mg L(-1) in 1985. The CFC age-date projections suggest the concentration could have reached 0.11 mg L(-1) in ground water recharge by 2006. These results highlight an intersection of the N and P cycles potentially important for managing the quality of ground water discharged to surface water.  相似文献   
866.
In wetlands, translocation of Fe and Mn from reducing to oxidizing zones creates localized enrichments and depletions of oxide minerals. In zones of enrichment, oxides cement matrix particles together into aggregates. In this paper, we describe the various Fe- and Mn-cemented features present in the 1 to 2-mm size fraction of mine-waste contaminated wetland soils of the Coeur d'Alene (CDA) River Basin in northern Idaho. These aggregates are categorized based on color and morphology. Total Fe and Mn concentrations are also reported. Distribution of the aggregates in soil profiles along an elevation transect with varying water table heights was investigated. Six distinct categories of aggregates were characterized in the 1 to 2-mm size fraction. The two most predominant categories were aggregates cemented by only Fe oxides and aggregates cemented by a mixture of Fe and Mn oxides. Iron-depleted aggregates, Fe and Mn-cemented sand aggregates, and root channel linings were also identified. The remaining aggregates were categorized into a catch-all category that consisted of primarily charcoal particles. The highest Fe content was in the root channel linings, and the highest Mn content was in the Fe/Mn cemented particles. Iron-cemented aggregates were most common in surface horizons at all sites, and root channels were most common in the 30 to 45-cm core at the lowland point, reflecting the presence of deep rooting vegetation at this site. Spatial distributions of other aggregates at the site were not significant.  相似文献   
867.
To avoid increasing costs of landfill disposal, it has become increasingly important for U.S. foundries to identify beneficial reuses for the 8 to 12 million tons of waste foundry sand (WFS) generated annually. A major drawback to the reuse of some WFSs as a soil amendment is their high soil strength, under dry conditions, where root growth may be limited. Fifteen WFSs were analyzed for strength to rupture using lab-formed clods, exchangeable cations (Na, Mg, Ca), metal oxide concentration (Fe, Mn, Al, Si), cation exchange capacity (CEC), and % clay. Several WFS samples from gray iron foundries demonstrated high strength to rupture values (> 1.5 MPa), and could potentially restrict root growth in amended soils. The percentage of Na-bentonite exhibited a positive correlation (R(2) = 0.84) with strength to rupture values. When WFSs containing more Na-bentonite were saturated with 1 mol L(-1) Ca ions, strength values decreased by approximately 70%. Waste foundry sands containing less Na-bentonite were saturated with 1 mol L(-1) Na ions and exhibited a threefold increase in strength. Additions of gypsum (up to 9.6 g kg(-1) sand) to high strength waste foundry sands also caused decreases in strength. These results indicate that high strength WFSs have properties similar to hardsetting soils which are caused by high Na(+) clay content and can be ameliorated by the addition of Ca(2+).  相似文献   
868.
Water-soluble anionic polyacrylamide (WSPAM), which is used to reduce erosion in furrow irrigated fields and other agriculture applications, contains less than 0.05% acrylamide monomer (AMD). Acrylamide monomer, a potent neurotoxicant and suspected carcinogen, is readily dissolved and transported in flowing water. The study quantified AMD leaching losses from a WSPAM-treated corn (Zea mays L.) field using continuous extraction-walled percolation samplers buried at 1.2 m depth. The samplers were placed 30 and 150 m from the inflow source along a 180-m-long corn field. The field was furrow irrigated using WSPAM at the rate of 10 mg L(-1) during furrow advance. Percolation water and furrow inflows were monitored for AMD during and after three furrow irrigations. The samples were analyzed for AMD using a gas chromatograph equipped with an electron-capture detector. Furrow inflows contained an average AMD concentration of 5.5 microg L(-1). The AMD in percolation water samples never exceeded the minimum detection limit and the de facto potable water standard of 0.5 microg L(-1). The risk that ground water beneath these WSPAM-treated furrow irrigated soils will be contaminated with AMD appears minimal.  相似文献   
869.
Avermectins are widely used to treat livestock for parasite infections. Ivermectin, which belongs to the group of avermectins, is particularly hazardous to the environment, especially to crustaceans and to soil-dwelling organisms. Sorption is one of the key factors controlling transport and bioavailability. Therefore, batch studies have been conducted to characterize the sorption and desorption behavior of ivermectin in three European soils (Madrid, York, and artificial soil). The solid-water distribution coefficient (K(d)) for ivermectin sorption to the tested soils were between 57 and 396 L kg(-1) (determined at 0.1 microg g(-1)), while the organic carbon-normalized sorption coefficients (K(oc)) ranged from 4.00 x 10(3) to 2.58 x 10(4) L kg(-1). The Freundlich sorption coefficient (K(F)) was 396 (after 48 h) for the artificial soil over a concentration range of 0.1 to 50 microg g(-1), with regression constants indicating a concentration-dependent sorption. The obtained data and data in the literature are inconclusive with regard to whether hydrophobic partitioning or more specific interactions are involved in sorption of avermectins. For abamectin, hydrophobic partitioning seems to be one of the dominant types of binding, while hydrophobicity is less important for ivermectin, which is probably due to the lower lipophilicity of the molecule. Furthermore, the presence of cations such as Ca(2+) leads to decreasing sorption. Thus, it is presumed that ivermectin binds to soil by formation of complexes with immobile, inorganic soil matter. In contrast to abamectin, hysteresis could be excluded for ivermectin in the studied soils for the evaluation of sorption and desorption. The sorption mechanism is highly dependent on physicochemical properties of the avermectin.  相似文献   
870.
Leaching of nitrogen (N) after forest fertilization has the potential to pollute ground and surface water. The purpose of this study was to quantify N leaching through the primary rooting zone of N-limited Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] forests the year after fertilization (224 kg N ha(-1) as urea) and to calculate changes in the N pools of the overstory trees, understory vegetation, and soil. At six sites on production forests in the Hood Canal watershed, Washington, tension lysimeters and estimates of the soil water flux were used to quantify the mobilization and leaching of NO(3)-N, NH(4)-N, and dissolved organic nitrogen below the observed rooting depth. Soil and vegetation samples were collected before fertilization and 1 and 6 mo after fertilization. In the year after fertilization, the total leaching beyond the primary rooting zone in excess of control plots was 4.2 kg N ha(-1) (p = 0.03), which was equal to 2% of the total N applied. The peak NO(3)-N concentration that leached beyond the rooting zone of fertilized plots was 0.2 mg NO(3)-N L(-1). Six months after fertilization, 26% of the applied N was accounted for in the overstory, and 27% was accounted for in the O+A horizon of the soil. The results of this study indicate that forest fertilization can lead to small N leaching fluxes out of the primary rooting zone during the first year after urea application.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号