首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   188篇
  免费   1篇
  国内免费   13篇
安全科学   10篇
废物处理   23篇
环保管理   19篇
综合类   18篇
基础理论   37篇
污染及防治   50篇
评价与监测   32篇
社会与环境   12篇
灾害及防治   1篇
  2023年   3篇
  2022年   21篇
  2021年   15篇
  2020年   6篇
  2019年   11篇
  2018年   15篇
  2017年   9篇
  2016年   9篇
  2015年   7篇
  2014年   5篇
  2013年   26篇
  2012年   16篇
  2011年   13篇
  2010年   9篇
  2009年   4篇
  2008年   4篇
  2007年   5篇
  2006年   2篇
  2005年   5篇
  2003年   2篇
  2000年   1篇
  1999年   1篇
  1997年   3篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
  1979年   1篇
  1965年   1篇
排序方式: 共有202条查询结果,搜索用时 15 毫秒
81.

Numerous contaminants in huge amounts are discharged to the environment from various anthropogenic activities. Waterbodies are one of the major receivers of these contaminants. The contaminated water can pose serious threats to humans and animals, by distrubing the ecosystem. In treating the contaminated water, adsorption processes have attained significant maturity due to lower cost, easy operation and environmental friendliness. The adsorption process uses various adsorbent materials and some of emerging adsorbent materials include carbon- and polymer-based magnetic nanocomposites. These hybrid magnetic nanocomposites have attained extensive applications in water treatment technologies due to their magnetic properties as well as combination of unique characteristics of organic and inorganic elements. Carbon- and polymer-related magnetic nanocomposites are more adapted materials for the removal of various kinds of contaminants from waterbodies. These nanocomposites can be produced via different approaches such as filling, pulse-laser irradiation, ball milling, and electro-spinning. This comprehensive review is compiled by reviewing published work of last the latest recent 3 years. The review article extensively focuses on different approaches for producing various carbon- and polymer-based magnetic nanocomposites, their merits and demerits and applications for sustainable water purification. More specifically, use of carbon- and polymer-based magnetic nanocomposites for removal of heavy metal ions and dyes is discussed in detail, critically analyzed and compared with other technologies. In addition, commercial viability in terms of regeneration of adsorbents is also reviewed. Furthermore, the future challenges and prospects in employing magnetic nanocomposites for contaminant removal from various water sources are presented.

  相似文献   
82.
Environmental Science and Pollution Research - The current work aimed to study the physical, chemical and biological properties of food wastes generated from small and medium industries by using...  相似文献   
83.
Environmental Science and Pollution Research - Serum total and free calcium reflect the status of the body health and disease. Smoking is risk factor for many diseases as cardiovascular, lung, and...  相似文献   
84.
The rapid advances in technology and improved living standard of the society necessitate abundant use of fossil fuels which poses two major challenges to any nation. One is fast depletion of fossil fuel resources; the other is environmental pollution. The porous medium combustion (PMC) has proved to be one of the technically and economically feasible options to tackle the aforesaid problems to a remarkable extent. PMC has interesting advantages compared with free flame combustion due to the higher burning rates, the increased power dynamic range, the extension of the lean flammability limits, and the low emissions of pollutants. This article provides a comprehensive picture of the global scenario of research and developments in PMC and its applications that enable a researcher to decide the direction of further investigation. The works published so far in this area are reviewed, classified according to their objectives and presented in an organized manner with general conclusions. A separate section is devoted for the numerical modeling of PMC.  相似文献   
85.
CuO nanomaterials were synthesized by a simple solution phase method using cetyltrimethylammonium bromide(CTAB) as a surfactant and their photocatalytic property was determined towards the visible-light assisted degradation of Reactive Black-5 dye. A detailed mechanism for the formation of CuO nanostructures has been proposed.The effect of various experimental parameters such as catalyst amount, dye concentration,p H and oxidizing agent on the dye degradation efficiency was studied. About 87% dye was degraded at p H 2 in the presence of CuO nanosheets under visible light. The enhanced photocatalytic activity of CuO nanosheets can be ascribed to good crystallinity, grain size,surface morphology and a strong absorption in the visible region. CuO is found to be a promising catalyst for industrial waste water treatment.  相似文献   
86.
To determine the level of total hydrocarbon concentrations (THCs) along the eastern coastal regions of Peninsular Malaysia, samples of subsurface seawater (1 m) and surface sediments were collected from several sampling stations between June and August 1993. THCs in seawater and sediments as determined by fluorescence spectroscopy ranged from 1.4 to 21.8 µg L-1 (Seligi crude oil equivalents) and from 0.79 to 20.0 mg kg-1 (dry weight Seligi crude oil equivalents) respectively. In comparison to results obtained in similar surveys in Malaysian waters, the levels of THCs found in the present study were significantly lower indicating lower hydrocarbon contamination in the area studied.  相似文献   
87.
Multiwall carbon nanotubes(MWCNTs) were synthesized using a tubular microwave chemical vapor deposition technique, using acetylene and hydrogen as the precursor gases and ferrocene as catalyst. The novel MWCNT samples were tested for their performance in terms of Pb(Ⅱ)binding. The synthesized MWCNT samples were characterized using Fourier Transform Infrared(FT-IR), Brunauer, Emmett and Teller(BET), Field Emission Scanning Electron Microscopy(FESEM) analysis, and the adsorption of Pb(Ⅱ) was studied as a function of p H,initial Pb(Ⅱ) concentration, MWCNT dosage, agitation speed, and adsorption time, and process parameters were optimized. The adsorption data followed both Freundlich and Langmuir isotherms. On the basis of the Langmuir model, Qmaxwas calculated to be 104.2 mg/g for the microwave-synthesized MWCNTs. In order to investigate the dynamic behavior of MWCNTs as an adsorbent, the kinetic data were modeled using pseudo first-order and pseudo second-order equations. Different thermodynamic parameters, viz., ΔH0, ΔS0and ΔG0were evaluated and it was found that the adsorption was feasible, spontaneous and endothermic in nature. The statistical analysis revealed that the optimum conditions for the highest removal(99.9%) of Pb(Ⅱ) are at p H 5, MWCNT dosage 0.1 g, agitation speed 160 r/min and time of 22.5 min with the initial concentration of 10 mg/L. Our results proved that microwave-synthesized MWCNTs can be used as an effective Pb(Ⅱ) adsorbent due to their high adsorption capacity as well as the short adsorption time needed to achieve equilibrium.  相似文献   
88.
The biological aerated filter (BAF) system, a new alternative in drinking water treatment, was designed to remove NH4+–N and Mn2+ simultaneously. This study aimed to control the aeration time in the BAF system for simultaneous NH4+–N and Mn2+ removal to achieve the Malaysian effluent quality regulation for drinking water. The experiment was conducted under four strategies of S1, S2, S3 and S4. The results demonstrated that acceptable levels of NH4+–N and Mn2+ were achieved over a 6 h aeration period (S1), producing effluent concentrations of 0.7 mg/L (93.2% removal) and 0.08 mg/L (79.6% removal), respectively. At the initial treatment of S1 and S2, the dissolved oxygen (DO) level rapidly increased until it reached a saturated concentration (6.8 mg/L DO) after 2 h period. Automatic on–off aeration time to maintain 3 mg/L DO set point (S4) resulted with a good effluent quality of NH4+–N and Mn2+ compared with the 2 mg/L DO set point (S3) which did not meet the regulated standard limits. Through the automatic on–off aeration time, the saturated and excessive DO levels in the BAF system can be avoided consequently reduce the wastage of energy and electrical consumption for simultaneous NH4+–N and Mn2+ removal from drinking water treatment.  相似文献   
89.
Journal of Polymers and the Environment - The aim of this study was to investigate the physical, mechanical, morphological, structural, and thermal properties of polylactic acid (PLA) and...  相似文献   
90.
Environmental Science and Pollution Research - Exposing concrete to high temperatures leads to harmful effects in its mechanical and microstructural properties, and ultimately to total failure. In...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号