首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   2篇
  国内免费   1篇
安全科学   1篇
废物处理   4篇
环保管理   6篇
综合类   15篇
基础理论   15篇
污染及防治   32篇
评价与监测   7篇
社会与环境   5篇
灾害及防治   1篇
  2023年   1篇
  2022年   5篇
  2021年   7篇
  2020年   1篇
  2019年   3篇
  2018年   4篇
  2017年   7篇
  2016年   8篇
  2015年   2篇
  2014年   8篇
  2013年   8篇
  2012年   3篇
  2011年   6篇
  2010年   2篇
  2009年   3篇
  2008年   4篇
  2007年   2篇
  2006年   4篇
  2005年   2篇
  2004年   2篇
  2001年   2篇
  1989年   1篇
  1987年   1篇
排序方式: 共有86条查询结果,搜索用时 31 毫秒
51.
Environment, Development and Sustainability - Urbanization has threatened rural communities’ livelihoods worldwide, changing their agro-food systems from locally produced traditional items to...  相似文献   
52.
The effect of molting on osmotic and chloride concentrations in the blood of the prawn Penaeus monodon Fabricius (20±3 g) at various salinities was investigated. Prawns were obtained from ponds in Iloilo, Philippines, in 1984. They were stocked in salinities of 8, 20, 32 and 44, and their hemolymph was sampled during molt (Time 0), and then 0.125, 0.25, 0.5, 1, 2, 4, 6, 10 and 14 d after molting. Prawns during and immediately after molt tended to conform to the environmental osmolality. Subsequent postmolt (0.5 d) stages displayed more divergence from external salinity. The isosmotic point was higher (940±30 mOsm kg-1) during molt than during intermolt (663±8 mOsm/kg-1), suggesting different osmotic requirements in early molt. Hyperregulation of hemolymph chloride below 20 S, as well as isoionic point (301±6 mM), were independent of molting stage. At 20 S and above, newly molted (0 to 0.25 d post-molt) individuals tended to conform to the external chloride concentration while intermolt (0.5 d) post-molt individuals did not. Contribution of hemolymph chloride to hemolymph osmolality was greater during intermolt than during ecdysis, suggesting an important role for other negatively charged ions during molt. When molt occurred in 20 S (the test salinity most similar to the isoionic salinity), there was little or no change in hemolymph osmolality or chloride concentration from 0 to 14 d postmolt. At 8, 32 and 44 S, the change from molt to intermolt values in hemolymph osmotic and chloride concentrations was hyperbolic. Non-linear least-squares regression showed that prawns generally achieved intermolt values within 1 d after molting. Prawns at intermolt regulated hemolymph osmolality (620 to 820 mOsm kg-1) and chloride concentration (300 to 450 mM) at a much narrower range than during molt (520 to 1 170 mOsm kg-1 and 250 to 520 mM, respectively). Hemolymph osmolality was a more sensitive indicator of physiological response than hemolymph chloride concentration. Distribution and culture of P. monodon might be limited in low salinities by its ability to maintain a hemolymph osmolality 500 mOsm kg-1 during molt and 600 mOsm kg-1 in intermolt, and in high salinities by its capacity to reduce the hemolymph osmolality from values at molt to those in intermolt. Osmotic and chloride concentrations in the blood of P. monodon clearly varied with both molt stage and salinity of the medium. Dependence on external factors, however, gradually declined in older molt stages, suggesting a reduction in integument permeability and greater development of ion absorption/secretion mechanisms as the exoskeleton hardened.SEAFDEC Contribution No. 197  相似文献   
53.
Pulse amplitude modulated (PAM) fluorescence has been used as a proxy of microphytobenthic biomass after a dark adaptation period of 15 min to stabilise the minimum fluorescence yield (F o 15). This methodology was investigated for in situ migratory and ex situ engineered non-migratory biofilms, comparing dark adaptation to low (5% ambient) and far-red light treatments over different emersion periods. Far-red and low light reduced potential errors resulting from light history effects, by reversal of non-photochemical quenching after 5 min of treatment, compared to over 10 min required by conventional dark adaptation. An in situ decline of minimum fluorescence yield over 15 min was observed during the dark adaptation for migratory biofilms, but was not observed in the non-migratory biofilms indicating that the major cause of decline was downward vertical migration of cells into the sediment. This pattern occurred in far-red light after 10 min, but not for the low light treatment, indicating that low light maintained the biomass at the surface of the sediment. It is therefore concluded that low light treatment is a better option than conventional dark adaptation for the measurement of minimum fluorescence as a proxy of microphytobenthic biomass.  相似文献   
54.
The Negro River is located in the Amazon basin, the largest hydrological catchment in the world. Its water is used for drinking, domestic activities, recreation and transportation and water quality is significantly affected by anthropogenic impacts. The goals of this study were to determine the presence and concentrations of the main viral etiological agents of acute gastroenteritis, such as group A rotavirus (RVA) and genogroup II norovirus (NoV GII), and to assess the use of human adenovirus (HAdV) and JC polyomavirus (JCPyV) as viral indicators of human faecal contamination in the aquatic environment of Manaus under different hydrological scenarios. Water samples were collected along Negro River and in small streams known as igarapés. Viruses were concentrated by an organic flocculation method and detected by quantitative PCR. From 272 samples analysed, HAdV was detected in 91.9 %, followed by JCPyV (69.5 %), RVA (23.9 %) and NoV GII (7.4 %). Viral concentrations ranged from 102 to 106 GC L?1 and viruses were more likely to be detected during the flood season, with the exception of NoV GII, which was detected only during the dry season. Statistically significant differences on virus concentrations between dry and flood seasons were observed only for RVA. The HAdV data provides a useful complement to faecal indicator bacteria in the monitoring of aquatic environments. Overall results demonstrated that the hydrological cycle of the Negro River in the Amazon Basin affects the dynamics of viruses in aquatic environments and, consequently, the exposure of citizens to these waterborne pathogens.  相似文献   
55.
Lead (Pb) has been highlighted as a major pollutant of both terrestrial and aquatic ecosystems, causing negative impacts to these environments. The concentration of Pb in plants has increased in recent decades, mainly due to anthropogenic activities. This study has as a hypothesis that the species Oxycaryum cubense (Poep. & Kunth) Palla, abundant in aquatic environments, has the potential to be used a phytoremediator. The plants were grown in a hydroponic system with Pb in increasing concentrations (0, 4, 8, 16 and 32 mg l?1) for 15 days. Inductively coupled mass spectrometer (ICP OES) was used to determine the concentration of mineral nutrients and lead. Optical and transmission electron microscopy were used for the analysis of cellular damage induced by lead in roots and leaves. Ultrastructural alterations were observed as disorganization of thylakoids in the chloroplast and disruption of mitochondrial membranes in cells of leaf tissues of plants subjected to increasing Pb concentrations. There was accumulation of Pb, especially in the root system, affecting the absorption and translocation of some mineral nutrients analysed. In roots, there was reduction in the thickness of the epidermis in plants treated with Pb. This species was shown to be tolerant to the Pb concentrations evaluated, compartmentalizing and accumulating Pb mainly in roots. Due to these results, it may be considered a species with phytoremediation capacity for Pb, with potential rizofiltration of this metallic element in contaminated watersheds.  相似文献   
56.
Abandoning fossil fuels and increasingly relying on low-density, land-intensive renewable energy will increase demand for land, affecting current global and regional rural–urban relationships. Over the past two decades, rural–urban relationships all over the world have witnessed unprecedented changes that have rendered their boundaries blurred and have lead to the emergence of “new ruralities.” In this paper, we analyze the current profiles of electricity generation and consumption in relation to sociodemographic variables related to the use of time and land across the territory of Catalonia, Spain. Through a clustering procedure based on multivariate statistical analysis, we found that electricity consumption is related to functional specialization in the roles undertaken by different types of municipalities in the urban system. Municipality types have distinctive metabolic profiles in different sectors depending on their industrial, services or residential role. Villages’ metabolism is influenced by urban sprawl and industrial specialization, reflecting current “new ruralities.” Segregation between work activity and residence increases both overall electricity consumption and its rate (per hour) and density (per hectare) of dissipation. A sustainable spatial organization of societal activities without the use of fossil fuels or nuclear energy would require huge structural and sociodemographic changes to reduce energy demand and adapt it to regionally available renewable energy.  相似文献   
57.
The impact of nanoparticles on fish health is still a matter of debate, since nanotechnology is quite recent. In this study, freshwater benthonic juvenile fish Prochilodus lineatus were exposed through water to three concentrations of TiO2 (0.1, 1, and 10 μg l?1) and ZnO (7, 70, and 700 μg l?1) nanoparticles, as well as to a mixture of both (TiO2 1 μg l?1?+?ZnO 70 μg l?1) for 5 and 30 days. Nanoparticle characterization revealed an increase of aggregate size in the function of concentration, but suspensions were generally stable. Fish mortality was high at subchronic exposure to 70 and 700 μg l?1 of ZnO. Nanoparticle exposure led to decreased acetylcholinesterase activity either in the muscle or in the brain, depending on particle composition (muscle—TiO2 10 μg l?1; brain—ZnO 7 and 700 μg l?1), and protein oxidative damage increased in the brain (ZnO 70 μg l?1) and gills (ZnO 70 μg l?1 and mixture) but not in the liver. Exposed fish had more frequent alterations in the liver (necrosis, vascular congestion, leukocyte infiltration, and basophilic foci) and gills (hyperplasia and epithelial damages, e.g., epithelial disorganization and epithelial loss) than the control fish. Thus, predicted concentrations of TiO2 and ZnO nanoparticles caused detectable effects on P. lineatus that may have important consequences to fish health. But, these effects are much more subtle than those usually reported in the scientific literature for high concentrations or doses of metal nanoparticles.  相似文献   
58.
Wastewater treatments can eliminate or remove a substantial amount of pharmaceutical active compounds (PhACs), but there may still be significant concentrations of them in effluents discharged into surface water bodies. Beirolas wastewater treatment plant (WWTP) is located in the Lisbon area and makes its effluent discharges into Tagus estuary (Portugal). The main objective of this study is to quantify a group of 32 PhACs in the different treatments used in this WWTP. Twelve sampling campaigns of wastewater belonging to the different treatments were made in 2013–2014 in order to study their removal efficiency. The wastewaters were analysed by solid phase extraction (SPE) and ultra-performance liquid chromatography coupled with tandem mass detection (UPLC–MS/MS). The anti-diabetics were the most frequently found in wastewater influent (WWI) and wastewater effluent (WWE) (208 and 1.7 μg/L, respectively), followed by analgesics/antipyretics (135 μg/L and < LOQ, respectively), psychostimulants (113 and 0.49 μg/L, respectively), non-steroidal anti-inflammatory drugs (33 and 2.6 μg/L, respectively), antibiotics (5.2 and 1.8 μg/L, respectively), antilipidemics (1.6 and 0.24 μg/L, respectively), anticonvulsants (1.5 and 0.63 μg/L, respectively) and beta blockers (1.3 and 0.51 μg/L, respectively). A snapshot of the ability of each treatment step to remove these target PhACs is provided, and it was found that global efficiency is strongly dependent on the efficiency of secondary treatment. Seasonal occurrence and removal efficiency was also monitored, and they did not show a significant seasonal trend.  相似文献   
59.
The modification of MCM-41 was performed with 3-aminopropropyltrimethoxysilane. The structural order and textural properties of the synthesized materials were studied by X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetry/differential thermogravimetry, nitrogen adsorption, and desorption analysis. The adsorption capacity of NH2-MCM-41 was studied with Remazol Red dye. The following parameters were studied in the adsorption process: pH, temperature, adsorbent dosage, and initial concentration. The desorption process was studied in different concentrations of NaOH solutions. The Freundlich isotherm model was found to be fit with the equilibrium isotherm data. Kinetics of adsorption follows the modified Avrami rate equation. The maximum adsorption capacity was estimated to be 45.9 mg?g?1, with removal of the dye of 99.1 %. The NH2-MCM-41 material exhibited high desorption capacity with 98.1 %.  相似文献   
60.
Trace elements were determined in fish and oysters from Sepetiba Bay, Brazil, by total reflection Xray fluorescence using synchrotron radiation (SRTXRF). Cr, Mn, Fe, Ni, Cu, Zn and Se were determined in fish muscles and organs and in oyster soft tissue. SRTXRF was shown to be a good tool for the analysis of trace elements from biological tissue samples. Overall, the levels of the analysed metals were higher in oysters than in the fish samples. Metals were not uniformly distributed throughout the body of the analysed fish. The detected concentrations of Cr, Zn and Se were very high in some samples, surpassing the maximum limits established by Brazilian legislation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号